Entropy functions

Anna Giordano Bruno (joint work with Dikran Dikranjan)

Algebra meets Topology: Advances and Applications Conference in honour of Dikran Dikranjan on his 60th birthday Barcelona, July 20, 2010 For a category \mathfrak{X} , consider the category $\mathbf{Flow}_{\mathfrak{X}}$ of flows in \mathfrak{X} .

- Objects: (X, ϕ) , where X is an object in \mathfrak{X} and $\phi : X \to X$ a morphism in \mathfrak{X} .

Problem

How to define an entropy function in $Flow_{\mathfrak{X}}$?

We consider the case of \mathbf{Flow}_R , that is, $\mathbf{Flow}_{\mathfrak{X}}$ with $\mathfrak{X} = \mathbf{Mod}_R$, R unitary commutative ring.

Entropy in a module category

Entropy functions

• Flow_R \cong Mod_{R[t]}: (M, ϕ) \mapsto M_{ϕ}, with $t \cdot m = \phi(m)$ for every $m \in M_{\phi}$.

Let A be a unitary commutative ring (eventually, A = R[t]).

Definition

An entropy function h of Mod_A is $h : Mod_A \to \mathbb{R}_+ \cup \{\infty\}$ such that:

(A1)
$$h(0) = 0$$
 and $h(M) = h(N)$ if $M \cong N$ in \mathbf{Mod}_A ;

(A2) if
$$M \in \mathbf{Mod}_A$$
 and $N \le M$, then
 $h(M) = 0$ if and only if $h(N) = 0 = h(M/N)$;

(A3) if
$$M \in \mathbf{Mod}_A$$
 and $M = \lim_{i \to \infty} \{M_j \le M : j \in J\}$, then $h(M) = 0$ if and only if $h(M_j) = 0$ for every $j \in J$.

Entropy in a module <u>category</u>

└─ The Pinsker radical

A functor $\mathbf{r} : \mathbf{Mod}_A \to \mathbf{Mod}_A$ is a *preradical* if $\mathbf{r}(M) \le M$ for every $M \in \mathbf{Mod}_A$, and $f(\mathbf{r}(M)) \subseteq \mathbf{r}(N)$ for every $f : M \to N$ in \mathbf{Mod}_A .

- **r** radical if $\mathbf{r}(M/\mathbf{r}(M)) = 0$ for every $M \in \mathbf{Mod}_A$;
- **r** hereditary if $\mathbf{r}(N) = N \cap \mathbf{r}(M)$ for every $M \in \mathbf{Mod}_A$, $N \leq M$.

h entropy function of \mathbf{Mod}_A .

Definition

The Pinsker radical P_h : $Mod_A \rightarrow Mod_A$ is defined, for every $M \in Mod_A$, by

$$\mathbf{P}_h(M) = \sum \{N_j \leq M : h(N_j) = 0\}.$$

- $h(\mathbf{P}_{h}(M)) = 0$ and
- $\mathbf{P}_h(M)$ is the greatest submodule of M with this property.

Theorem

 $\mathbf{P}_h: \mathbf{Mod}_A \to \mathbf{Mod}_A$ is a hereditary radical.

Entropy in a module category

└─ Other axioms

h entropy function of $\mathbf{Flow}_R \cong \mathbf{Mod}_{R[t]}$.

(A0) $h(0_M) = 0$ and $h(1_M) = 0$ for every $M \in \mathbf{Mod}_R$.

(A2*) h(M) = h(N) + h(M/N) for every $N \le M$ in $\mathbf{Mod}_{R[t]}$.

(A3*) If $M = \varinjlim\{M_j \le M : j \in J\}$, then $h(M) = \sup\{h(M_j) : j \in J\}$. (A4) $h(\phi^n) = nh(\phi)$ for every $(M, \phi) \in \operatorname{Flow}_R$.

For $M \in \mathbf{Mod}_R$, the right Bernoulli shift is $\beta_M : M^{(\mathbb{N})} \to M^{(\mathbb{N})}$ defined by $(x_0, \ldots, x_n, \ldots) \mapsto (0, x_0, \ldots, x_n, \ldots)$. *I* ideal of R; $((R/I)^{(\mathbb{N})}, \beta_{R/I}) \in \mathbf{Flow}_R \mapsto (R/I)[t] \in \mathbf{Mod}_{R[t]}$.

(A5) $h((R/I)[t]) = r_I$ (i.e., $h(\beta_{R/I}) = r_I$), for every ideal I of R. (A5^{*}) $h(R[t]/J) = r_J$, for every ideal J of R[t].

(*R* commutative Noetherian), (A1), (A2^{*}), (A3^{*}), (A5^{*}) for prime ideals \implies Uniqueness of *h*. [Vámos]

Example: the algebraic entropy

Definition

Definition (Peters)

G abelian group, $\phi: G \rightarrow G$ endomorphism,

- F non-empty finite subset of G, n positive integer.
 - The *n*-th ϕ -trajectory of *F* is

$$T_n(\phi, F) = F + \phi(F) + \ldots + \phi^{n-1}(F).$$

• The algebraic entropy of ϕ with respect to F is

$$H_{a}(\phi, F) = \lim_{n \to \infty} \frac{\log |T_{n}(\phi, F)|}{n}$$

• The algebraic entropy of ϕ is

 $h_a(\phi) = \sup\{H_a(\phi, F) : F \text{ non-empty finite subset of } G\}.$

Example: the algebraic entropy

└─ Basic properties

G abelian group,
$$H \phi$$
-invariant,

(A0)
$$h_a(0_G) = h_a(id_G) = 0.$$

(A1) $\xi: G \to H$ isomorphism, $\begin{array}{c} G \xrightarrow{\phi} G \\ \xi \downarrow & \downarrow \xi \\ H \xrightarrow{\psi} H \end{array}$ commutes, $h_a(\phi) = h_a(\psi)$.

 $\begin{array}{l} (A2^*) \quad h_a(\phi) = h_a(\phi \upharpoonright_H) + h_a(\overline{\phi}).\\ (A3^*) \quad G = \varinjlim \{G_i : i \in I\}, \ G_i \ \phi \text{-inv, then } h_a(\phi) = \sup_{i \in I} h_a(\phi \upharpoonright_{G_i}).\\ (A4) \quad h_a(\phi^k) = k \cdot h_a(\phi) \text{ for every } k \ge 0.\\ (A5) \quad h_a(\beta_{\mathbb{Z}(p)}) = \log p \text{ for every prime } p.\\ h_a \text{ is an entropy function of } \operatorname{Flow}_{\mathbb{Z}} \cong \operatorname{Mod}_{\mathbb{Z}[t]}. \end{array}$

Uniqueness of the algebraic entropy:

 h_a is the unique collection $h_a = \{h_G : G \text{ abelian group}\}$ of functions $h_G : \operatorname{End}(G) \to \mathbb{R}_+ \cup \{\infty\}$ satisfying (A1), (A2^{*}), (A3^{*}), (A5) and the following:

Theorem (Algebraic Yuzvinski Formula)

For $n \in \mathbb{N}$ and $\phi \in Aut(\mathbb{Q}^n)$ described by $A \in GL_n(\mathbb{Q})$,

$$h_a(\phi) = \log s + \sum_{|\lambda_i| > 1} \log |\lambda_i|,$$

where λ_i are the eigenvalues of A and s is the least common multiple of the denominators of the coefficients of the (monic) characteristic polynomial of A.

- Example: the algebraic entropy
 - Connection with the topological entropy

X compact space,
$$\psi: X \to X$$
 continuous function.

Definition (Adler, Konheim, Mc Andrew)

For \mathcal{U} open cover of X, let $N(\mathcal{U}) = \min\{|\mathcal{V}| : \mathcal{V} \text{ subcover of } \mathcal{U}\}$. For \mathcal{U} and \mathcal{V} open covers of X, $\mathcal{U} \lor \mathcal{V} = \{U \cap V : U \in \mathcal{U}, V \in \mathcal{V}\}$. The topological entropy of ψ with respect to \mathcal{U} is

$$H_{top}(\psi, \mathcal{U}) = \lim_{n \to \infty} \frac{\log N(\mathcal{U} \lor \psi^{-1}(\mathcal{U}) \lor \ldots \lor \psi^{-n+1}(\mathcal{U}))}{n}$$

,

and the topological entropy of $\boldsymbol{\psi}$ is

$$h_{top}(\psi) = \sup\{H_{top}(\psi, \mathcal{U}) : \mathcal{U} \text{ open cover of } X\}.$$

Theorem

Let G be an abelian group and $\phi : G \to G$ an endomorphism, \widehat{G} the Pontryagin dual of G and $\widehat{\phi} : \widehat{G} \to \widehat{G}$ the adjoint of ϕ . Then $h_a(\phi) = h_{top}(\widehat{\phi})$. └─ The Pinsker subgroup and the Pinsker factor

 ${\it G}$ abelian group, $\phi:{\it G}\rightarrow{\it G}$ endomorphism.

The Pinsker subgroup of G is the greatest ϕ -invariant subgroup $\mathbf{P}(G, \phi)$ of G such that $h_a(\phi \upharpoonright_{\mathbf{P}(G,\phi)}) = 0$.

•
$$\mathbf{P}(G,\phi) = \mathbf{P}_{h_a}(G,\phi)$$
 for every (G,ϕ) .

X compact space, $\psi: X \to X$ continuous function.

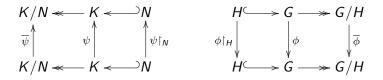
A factor $(\pi, (Y, \eta))$ of (X, ψ) is a compact space Y with $\eta: Y \to Y$ a continuous map and $\pi: X \to Y$ a continuous surjective map such that $\pi \circ \psi = \eta \circ \pi$.

• (X, ψ) admits a largest factor with zero topological entropy, called Pinsker factor. [Blanchard e Lacroix]

Example: the algebraic entropy

The Pinsker subgroup and the Pinsker factor

K compact abelian group, $\psi : K \to K$ continuous endomorphism, $G = \widehat{K}$ and $\phi = \widehat{\psi}$, $N \leq K$ closed ψ -invariant, $H = N^{\perp} \leq G \phi$ -invariant $(N = H^{\perp})$.



$$\mathcal{E}(G,\psi) := \mathbf{P}(\widehat{K},\widehat{\phi})^{\perp}$$

(for $N = \mathcal{E}(G,\psi)$ and $H = \mathbf{P}(\widehat{K},\widehat{\phi})$)

Theorem

 $(K/\mathcal{E}(G,\psi),\overline{\psi})$ is the topological Pinsker factor of (K,ψ) .

Definition

Let $\mathfrak{X} = \operatorname{CompGrp.} A$ contravariant entropy function of $\operatorname{Flow}_{\mathfrak{X}}$ is a function $h : \operatorname{Flow}_{\mathfrak{X}} \to \mathbb{R}_+ \cup \{\infty\}$ such that (C1) $h(X, \phi) = h(Y, \psi)$ if $(X, \phi) \cong (Y, \psi)$ in $\operatorname{Flow}_{\mathfrak{X}}$; (C2) if $(X, \phi) \in \mathfrak{X}$ and (Y, ψ) is a subobject of (X, ϕ) , then $h(X, \phi) = 0$ if and only if $h(Y, \phi \upharpoonright_Y) = 0 = h(X/Y, \overline{\phi})$, where $\overline{\phi} : X/Y \to X/Y$ is the endomorphism induced by ϕ ; (C3) if $(X, \phi) \in \operatorname{Flow}_{\mathfrak{X}}$ and $X = \varprojlim \{X_j : j \in J\}$, $X_j \phi$ -invariant subobject of X, then $h(X, \phi) = 0$ if and only if $h(X_j, \phi \upharpoonright_{X_j}) = 0$ for every $j \in J$.

Problem

Develop the theory of (covariant and) contravariant entropy functions in a possibly more general setting.