Algebraic entropy for non-torsion abelian groups

Anna Giordano Bruno (joint work with Dikran Dikranjan)

Groups and Topological Groups Essen, January 30th, 2010

Algebraic entropy

Definition

Definition (Justin Peters)

G abelian group, $\phi: G \to G$ endomorphism, F finite subset of G, n positive integer.

• The *n*-th ϕ -trajectory of *F* is

$$T_n(\phi, F) = F + \phi(F) + \ldots + \phi^{n-1}(F).$$

• The algebraic entropy of ϕ with respect to F is

$$H(\phi, F) = \lim_{n \to \infty} \frac{\log |T_n(\phi, F)|}{n}$$

• The algebraic entropy of $\phi: \mathcal{G} \to \mathcal{G}$ is

 $h(\phi) = \sup\{H(\phi, F) : F \text{ finite subset of } G\}.$

Basic properties

Monotonicity: $H \phi$ -invariant subgroup of $G, \overline{\phi}: G/H \to G/H$ induced by ϕ ; then $h(\phi) > \max\{h(\phi \upharpoonright_{H}), h(\overline{\phi})\}$. Invariance under conjugation: If $\phi = \xi^{-1} \psi \xi$, $\psi : H \to H$ endomorphism, $\xi: G \to H$ isomorphism $G \xrightarrow{\phi} G$, $\xi \downarrow \psi \downarrow \xi$ $H \xrightarrow{\psi} H$ then $h(\phi) = h(\psi)$. **Logarithmic law**: $h(\phi^k) = k \cdot h(\phi)$ for every $k \ge 0$. **Continuity**: If G is direct limit of ϕ -invariant subgroups $\{G_i : i \in I\}$, then $h(\phi) = \sup_{i \in I} h(\phi \upharpoonright_{G_i})$. Additivity for direct products: If $G = G_1 \times G_2$ and $\phi_i \in \text{End}(G_i), i = 1, 2$, then $h(\phi_1 \times \phi_2) = h(\phi_1) + h(\phi_2)$.

Algebraic entropy

Examples

•
$$\operatorname{ent}(\phi) = \operatorname{ent}(\phi \upharpoonright_{t(G)}) = h(\phi \upharpoonright_{t(G)})$$

Example

Let K be a non-trivial abelian group. The *right Bernoulli shift* $\beta_K : K^{(\mathbb{N})} \to K^{(\mathbb{N})}$ is defined by

$$\beta_{K}(x_{0}, x_{1}, x_{2}, \ldots) = (0, x_{0}, x_{1}, \ldots).$$

If K is finite, then:

•
$$h(\beta_K) = \operatorname{ent}(\beta_K) = \log |K|.$$

On the other hand, if $K = \mathbb{Z}$, then:

•
$$\operatorname{ent}(\beta_{\mathbb{Z}}) = 0;$$

•
$$h(\beta_{\mathbb{Z}}) = \infty$$
.

Algebraic entropy

Examples

Example

$$h(id_{\mathbb{Z}}) = 0.$$

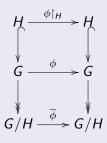
Indeed, let $F = \{f_1, \ldots, f_k\}$ be a finite subset of \mathbb{Z} . For every natural number n > 1, we show that $|T_n(id_{\mathbb{Z}}, F)| = |\underbrace{F + \ldots + F}_n| \le P_F(n)$, where $P_F(x) \in \mathbb{Z}[x]$: if $x \in T_n(id_{\mathbb{Z}}, F)$, then $x = \sum_{i=1}^k m_i f_i$, where $\sum_{i=1}^k m_i = n$, $m_i \ge 0$. Then $(m_1, \ldots, m_k) \in \{0, 1, \ldots, n\}^k$, and so $|T_n(id_{\mathbb{Z}}, F)| < (n+1)^k = (n+1)^{|F|} =: P_F(n)$.

Hence

$$H(id_{\mathbb{Z}},F) = \lim_{n\to\infty} \frac{\log |T_n(id_{\mathbb{Z}},F)|}{n} \leq \lim_{n\to\infty} \frac{k\log(n+1)}{n} = 0.$$

Theorem (Addition Theorem)

Let G be an abelian group, $\phi \in \text{End}(G)$, H a ϕ -invariant subgroup of G and $\overline{\phi} : G/H \to G/H$ the endomorphism induced by ϕ .



Then

$$h(\phi) = h(\phi \restriction_H) + h(\overline{\phi}).$$

Reductions:

- G torsion-free abelian group;
- G countable;
- G divisible;
- G of finite rank;
- ϕ injective.

It remains the case of an automorphism

$$\phi:\mathbb{Q}^n\to\mathbb{Q}^n$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

for n a positive integer.

Addition Theorem

Algebraic Yuzvinski Formula

Theorem (Algebraic Yuzvinski Formula)

For $n \in \mathbb{N}$ an automorphism ϕ of \mathbb{Q}^n is described by a matrix $A \in GL_n(\mathbb{Q})$. Then

$$h(\phi) = \log s + \sum_{|\lambda_i| > 1} \log |\lambda_i|,$$

where λ_i are the eigenvalues of A and s is the least common multiple of the denominators of the coefficients of the (monic) characteristic polynomial of A.

Follows from Yuzvinski Formula for topological entropy of automorphisms of $\widehat{\mathbb{Q}}^n$ and from the "Bridge Theorem" by Peters:

Theorem

For an automorphism ϕ of a countable abelian group G, $h(\phi) = h_{top}(\widehat{\phi}).$ **Uniqueness**: The algebraic entropy of the endomorphisms of abelian groups is the unique collection

$$h = \{h_G : \operatorname{End}(G) o \mathbb{R}_{\geq 0} \cup \{\infty\} : G ext{ abelian group}\}$$

satisfying:

- Invariance under conjugation;
- Algebraic Yuzvinski Formula;
- Addition Theorem;
- Continuity for direct limits;
- $h_{\mathbb{Z}(p)^{(\mathbb{N})}}(\beta_{\mathbb{Z}(p)}) = \log p$ for every prime p.

Let G be an abelian group and $\phi \in \operatorname{End}(G)$.

Definition

The Pinsker subgroup of G is the maximum ϕ -invariant subgroup $\mathbf{P}(G, \phi)$ of G such that $h(\phi \upharpoonright_{\mathbf{P}(G, \phi)}) = 0$.

Addition Theorem \Rightarrow existence of **P**(*G*, ϕ).

Motivation:

- For a measure preserving transformation φ of a measure space (X, B, μ) the Pinsker σ-algebra 𝔅(φ) of φ is the maximum σ-subalgebra of B such that φ restricted to (X,𝔅(φ), μ ↾_B) has entropy zero.
- If φ : K → K is a homeomorphism of a compact Hausdorff space K, then φ admits a largest factor with zero topological entropy, called *topological Pinsker factor*.

Let G be an abelian group and $\phi \in \text{End}(G)$.

Definition

The Pinsker subgroup of G is the maximum ϕ -invariant subgroup $\mathbf{P}(G, \phi)$ of G such that $h(\phi \upharpoonright_{\mathbf{P}(G, \phi)}) = 0$.

φ̄: G/P(G, φ) → G/P(G, φ) has strongly positive entropy (i.e., if 0 ≠ H ≤ G/P(G, φ) is φ̄-invariant, then h(φ̄ ↾_H) > 0).
P(G/P(G, φ), φ̄) = 0.

 $x \in G$ is quasi-periodic if there exist n > m in \mathbb{N} , $\phi^n(x) = \phi^m(x)$.

$$Q_1(G,\phi) = \{x \in G : (\exists n > m \text{ in } \mathbb{N}) \ (\phi^n - \phi^m)(x) = 0\}.$$

Example

If G is a torsion abelian group, then $P(G, \phi) = Q_1(G, \phi)$.

The Pinsker subgroup

The QP-subgroup

Let $Q_0(G, \phi) = 0$, and for every $n \in \mathbb{N}$ let $Q_{n+1}(G, \phi) = \{x \in G : (\exists n > m \text{ in } \mathbb{N}) \ (\phi^n - \phi^m)(x) \in Q_n(G, \phi)\}.$

$$Q_0(G,\phi) \subseteq Q_1(G,\phi) \subseteq \ldots \subseteq Q_n(G,\phi) \subseteq \ldots$$

Definition

The QP-subgroup of G is $\mathfrak{Q}(G, \phi) = \bigcup_{n \in \mathbb{N}} Q_n(G, \phi)$.

• Each $Q_n(G,\phi)$ and so $\mathfrak{Q}(G,\phi)$ is a ϕ -invariant subgroup of G.

•
$$\mathfrak{Q}(G/\mathfrak{Q}(G,\phi),\overline{\phi})=0.$$

Theorem

$$\mathsf{P}(G,\phi)=\mathfrak{Q}(G,\phi).$$

The Pinsker subgroup The Polynomial Growth Paradigm

> To prove $h(id_{\mathbb{Z}}) = 0$, we used that $\forall n > 1$ and $F \subseteq \mathbb{Z}$ finite, $|T_n(id_{\mathbb{Z}}, F)| = |\underbrace{F + \ldots + F}_n| \leq P_F(n)$, where $P_F(x) = (x+1)^{|F|}$.

Let G be an abelian group and let $\phi \in \text{End}(G)$. Then:

• $\phi \in \operatorname{Pol}_F$ for $F \subseteq G$ finite, if there exists $P_F(x) \in \mathbb{Z}[x]$, such that $|T_n(\phi, F)| \leq P_F(n)$ for every positive integer;

•
$$\phi \in \operatorname{Pol}$$
 if $\phi \in \operatorname{Pol}_F$ for every finite $F \subseteq G$.

Definition

Let $\operatorname{Pol}(G, \phi)$ be the maximum ϕ -invariant subgroup of G such that $\phi \upharpoonright_{\operatorname{Pol}(G,\phi)} \in \operatorname{Pol}$.

Theorem

$$\mathbf{P}(G,\phi) = \operatorname{Pol}(G,\phi) = \mathfrak{Q}(G,\phi).$$