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Introduction

Pseudocompactness was introduced by Hewitt with the aim to weaken compactness in
the spirit of Weierstraß theorem: a Tychonov topological space X is pseudocompact if ev-
ery real valued continuous function of X is bounded [49]. Pseudocompactness coincides
with compactness for metric spaces. Pseudocompact groups were characterized by Com-
fort and Ross [18, Theorem 4.1] (see Theorem 2.7). Moreover pseudocompact groups
are precompact, that is their completion is compact [18, Theorem 1.1]. All topological
groups in this thesis are Hausdorff.

A relevant problem involving pseudocompact groups is that of extremality, which was
introduced and studied by Comfort and co-authors since 1982 [14, 20]. The following
are the main two levels of extremality.

Definition 1. [7, 16, 29] A pseudocompact group is:

• s-extremal if it has no proper dense pseudocompact subgroup;

• r-extremal if there exists no strictly finer pseudocompact group topology.

It was immediately observed that every pseudocompact metrizable (so compact)
group is s- and r-extremal. So arose the natural question of whether every pseudocom-
pact group that is either s- or r-extremal is metrizable [14, 20]. This question, posed in
1982, turned out to be very difficult and many papers in the following twenty-five years
proposed partial solutions [7, 9, 11, 12, 13, 14, 16, 20, 21, 22, 29, 43]. Recently Comfort
and van Mill proved that the answer to this question is positive:

Theorem A. [22, Theorem 1.1] For a pseudocompact abelian group G the following
conditions are equivalent:

(a) G is s-extremal;

(b) G is r-extremal;

(c) G is metrizable.

Studying this topic, we introduced singular groups in [29, Definition 1.2].

Definition 2. A topological abelian group G is singular if there exists a positive integer
m such that w(mG) ≤ ω.

v
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The condition given in [29, Definition 1.2] to define singular abelian groups G was

(1) there exists a positive integer m such that G[m] is a Gδ-set of G,

and it was given for pseudocompact abelian groups. Anyway for pseudocompact abelian
groups these properties are equivalent and they are equivalent also to a third one, that
is

(2) G admits a closed torsion normal Gδ-subgroup.

The condition in (2) can be given also for non-necessarily abelian topological groups.
The equivalence of these three conditions for pseudocompact abelian groups is proved
by Lemma 3.35 with κ = ω. So singularity has various aspects and this is a reason for
which it is useful in different topics, as we are going to describe.

In [29] for example we proved Theorem A in the case when G is singular. Moreover
we saw that singularity is a necessary condition for a pseudocompact abelian group to
be either s- or r-extremal.

Recently singular groups turned out to be useful in another case: in Section 3.1 we
show that a counterexample for a recent conjecture which was in a preliminary version of
[21] (see http://atlas-conferences.com/cgi-bin/abstract/cats-72) can be found by making
use of singular groups.

The form in (2) was already used in [32], where the problem of the characterization of
compact groups admitting a proper dense subgroup with some compactness-like property
was considered. We give a historical panoramic of the general problem and we focus our
attention on the role of singular groups.

We begin recalling some definitions. A subgroup H of a topological group G is
strongly totally dense if H densely intersects every closed subgroup of G, and it is totally
dense if H densely intersects every closed normal subgroup of G [63]. These two concepts
coincide in the abelian case. The totally dense subgroups of a compact group K are
precisely those dense subgroups of K that satisfy the open mapping theorem [30, 31, 48]
(see Theorem 1.28), according to the “total minimality criterion” (see Theorem 1.50).
The groups with this property were introduced in [30] under the name totally minimal:
a topological group G is totally minimal if for every topological group H and for every
continuous surjective homomorphism f : G→ H, f is open.

A subgroup H of a topological group G is essential if H non-trivially intersects
every non-trivial closed normal subgroup of G [59, 64]. A totally dense subgroup is
necessarily dense and essential. A topological group G is minimal if there exists no
strictly coarser group topology on G. A totally minimal group is minimal. A description
of the dense minimal subgroups of compact groups was given in [59, 64] in terms of
essential subgroups. According to the “minimality criterion” given in [31, 59, 64] (see
Theorem 1.50) a dense subgroup H of a compact abelian group K is minimal if and only
if H is essential in K.
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A particular case of the previous mentioned problem has been largely studied, that is
the description of compact groups admitting proper totally dense subgroups with some
other compactness-like property. To better explain this problem and the known results
about it, we recall some definitions of compactness-like properties which did not appear
until here:

Definition 3. A Tychonov topological space X is:

• ω-bounded if every countable subset of X is contained in a compact subset of X;

• countably compact if every countable open cover of X has a finite subcover;

• strongly pseudocompact if X contains a dense countably compact subspace [2].

For topological groups we have the following chain of implications:

compact ⇒ ω-bounded ⇒ countably compact ⇒
strongly pseudocompact ⇒ pseudocompact ⇒ precompact.

It became clear that countable compactness and ω-compactness have to be imme-
diately ruled out, as no compact group can contain a proper strongly totally dense
countably compact subgroup [32, Theorem 1.4] (see also [25] for stronger results). So
one has to limit the compactness-like property within (strong) pseudocompactness.

We study the problem of the existence of proper totally dense pseudocompact sub-
groups of compact abelian groups. In view of our previous observation and of Comfort
and Ross theorem about pseudocompact groups (see Theorem 2.7), this is equivalent to
look for proper totally minimal Gδ-dense subgroups of compact abelian groups.

This problem was studied for the first time by Comfort and Soundararajan [20], and
they solved it in case K is a connected compact abelian group: the answer is if and only
if K is non-metrizable.

A topological group admitting some dense pseudocompact subgroup is necessarily
pseudocompact (see Corollary 2.14 with κ = ω). A necessary condition for a topological
group G to have a strongly totally dense pseudocompact subgroup was given in [32,
Theorem 1.7]: G does not admit any closed Gδ-subgroup, that is G is non-singular. As
noted above, this is the first time in which this concept appeared. In the case of compact
abelian groups this condition, namely non-singularity, was proved to be also sufficient
under the Lusin’s Hypothesis, which states that 2ℵ1 = 2ℵ0 (it obviously negates the
Continuum Hypothesis) [32, Theorem 1.8]. In [32, Problem 1.11] it was asked if it is
possible to remove this set-theoretical condition.

In the same paper it was proved that the compact abelian groups K with non-
metrizable connected component have the following stronger property TDω relaxing
countable compactness: there exists a proper totally dense subgroup H of K that con-
tains a dense ω-bounded subgroup of K [32, Theorem 1.9]. Obviously such an H is
strongly pseudocompact, but need not be countably compact. So the property TDω

appears to be stronger than having a proper totally dense pseudocompact subgroup and
the question is if they are equivalent for compact abelian groups [32, Problem 1.12].
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Inspired by the results in [32] and making advantage of [25], we use singular groups
and projections onto special non-singular powers to get the final positive solution of the
mentioned [32, Problems 1.11 and 1.12]. It is given by our following theorem, which is
the first main result of this thesis.

Theorem B. For a compact abelian group K the following conditions are equivalent:

(a) K has a proper totally dense pseudocompact subgroup;

(b) K is non-singular;

(c) there exists a continuous surjective homomorphism of K onto Sω1, where S is a
compact non-torsion abelian group;

(d) K has the property TDω.

The properties of singular compact abelian groups are crucial for the proof of this
theorem. The main difficulty is to prove that every non-singular compact abelian group
admits a projection onto an uncountable power of a compact non-torsion abelian group.

Another particular case of the general problem is that of compact abelian groups
admitting some proper essential dense subgroup with some other compactness-like prop-
erty.

It is known that there exist compact abelian groups with proper essential dense count-
ably compact subgroups [33, 39]. Moreover the problem of the existence of connected
compact abelian groups with proper essential dense countably compact subgroups is not
decidable in ZFC (it is equivalent to that of the existence of measurable cardinals — see
[38] and [24, Theorem 5.7]).

In analogy with Theorem B we decide to characterize compact abelian groups ad-
mitting some proper essential dense pseudocompact subgroup.

Definition 4. A topological abelian group G is super-singular if there exist p1, . . . , pn
primes such that w(p1 · . . . · pnG) ≤ ω.

Each super-singular topological abelian group is singular.

In view of Theorem B, in order to characterize compact abelian groups admitting
some proper essential dense pseudocompact subgroup it is sufficient to consider only the
case when the group is singular. The following theorem gives necessary and sufficient
conditions for a compact abelian group K to admit a proper essential dense pseudocom-
pact subgroup. We give it in the “negative form” because in this way the statement is
clearer.

Theorem C. Let K be a compact abelian group. Then the following conditions are
equivalent:

(a) K admits no proper essential dense pseudocompact subgroup;
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(b) K is singular and pTp(K) is metrizable for every prime p;

(c) K is super-singular.

This theorem can be considered also from another point of view, that we explain
in what follows. The concept of r-extremal pseudocompact abelian group is “dual”
to that of minimal pseudocompact group, in the sense that a pseudocompact abelian
group G is minimal if there exists no strictly coarser pseudocompact group topology
on G. As an immediate corollary of Theorem A it is possible to obtain that a proper
dense pseudocompact subgroup of a topological abelian group G cannot be either s- or
r-extremal: if H is a dense either s- or r-extremal pseudocompact subgroup of G, then
H is metrizable and so compact by Theorem A; hence H is closed in G and so H = G
since H is also dense in G. In view of this consequence of Theorem A, it is natural to
consider the problem of the characterization of pseudocompact abelian groups admitting
some proper dense minimal pseudocompact subgroup. Theorem C solves this problem
in the case of compact abelian groups, since a dense subgroup H of a compact abelian
group K is minimal if and only if H is essential in K as noted before.

There is a very natural generalization of pseudocompactness given by Kennison.

Definition 5. [54] Let κ be an infinite cardinal. A Tychonov topological space X is
κ-pseudocompact if f(X) is compact in Rκ for every continuous function f : X → Rκ.

In Chapter 2 we study κ-pseudocompact groups, characterizing them in terms of how
they are placed in their completion and also from the point of view of their “big” closed
normal subgroups. We show that they have properties similar to those of pseudocompact
groups. Moreover we introduce the Pκ-modification of a given topology (see Definition
2.2) and Theorem 2.27 is a new result of independent interest about the Pκ-modification
of the Bohr topology.

Our next aim is to generalize for κ-pseudocompactness Theorems A, B and C, that
is for each infinite cardinal κ we want to characterize

(Aκ) extremal κ-pseudocompact abelian groups,

(Bκ) compact abelian groups admitting some proper totally dense κ-pseudocompact
subgroup, and

(Cκ) compact abelian groups admitting some proper essential dense κ-pseudocompact
subgroup.

As singular groups and their properties were useful in working with these problems
in the case κ = ω, we want to analyze singularity in relation with κ-pseudocompactness
and generalize it for every infinite cardinal κ. To this aim in Chapter 3 we introduce a
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new cardinal invariant of topological abelian groups, that is the divisible weight wd(−)
(see Definition 3.10). This cardinal invariant measures singularity in a very precise way
and using it we introduce counterparts of singularity and non-singularity: we define
and study the groups for which this cardinal invariant is as big as possible (i.e., w-
divisible groups — see Definition 3.26) and the abelian groups for which it is smaller
than a given infinite cardinal κ (i.e., κ-singular groups — see Definition 3.32). The
latter new notion allows us to get the required generalization of Theorem B(b). In order
to have the right generalization also of Theorem C(c), we introduce another cardinal
invariant of topological abelian groups, namely the super-divisible weight (see Definition
3.48), which is strictly related to the weight and have properties similar to those of the
divisible weight. The super-divisible weight permits us to introduce super-κ-singular
abelian groups (see Definition 3.51).

The main examples of w-divisible groups are w-divisible products (i.e., uncountable
products of metrizable compact non-torsion abelian groups) and w-divisible powers (i.e.,
uncountable powers of metrizable compact non-torsion abelian groups) — see Example
3.29. It is onto these products and powers that we project the compact abelian groups
of Chapter 4.

Chapter 4 is dedicated to special product-like groups in the above sense. Indeed it is
well known that for every non-metrizable compact abelian group K there exists a contin-
uous surjective homomorphism of K onto a product

∏
i∈I Ki of non-trivial (metrizable)

compact abelian groups with |I| = w(K) (see Theorem 4.1). Since we would like to
generalize Theorem B for all infinite cardinals κ and in particular we need to extend
appropriately condition (c), motivated by these facts, we look for continuous surjective
homomorphisms of a compact group K onto products

∏
i∈I Ki of non-trivial metrizable

compact abelian groups, asking the groups Ki to be also non-torsion. In case |I| is
uncountable, this means that we are looking for a projection of K onto a w-divisible
product. Theorem D gives a necessary and sufficient condition for a non-singular com-
pact abelian group K to have such a projection onto a w-divisible product

∏
i∈I Ki with

|I| = wd(K).

Theorem D. Let K be a non-singular compact abelian group. There exists a continuous
surjective homomorphism of K onto a w-divisible product

∏
i∈I Ki if and only if ω < |I| ≤

wd(K). In particular every non-singular compact abelian group K admits a continuous
surjective homomorphism onto a w-divisible product of weight wd(K).

According to Corollary 4.12 of this theorem, a compact abelian group K admits such
a projection, with |I| = w(K) > ω, if and only if K is w-divisible.

In the rest of Chapter 4 we consider the particular case of this theorem when all
Ki coincide, that is we want to know under which conditions there exists a continuous
surjective homomorphism of a non-singular compact abelian group K onto a w-divisible
power Swd(K). Theorem 4.17 shows that for compact abelian groups K admitting a
continuous surjective homomorphism onto a w-divisible power Swd(K) there is a remark-
able trichotomy. Moreover Corollary D∗ gives a necessary and sufficient condition that
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ensures the existence of such a projection:

Corollary D∗. Let κ be an infinite cardinal. A compact abelian group K is non-κ-
singular if and only if there exists a continuous surjective homomorphism of K onto
Sκ

+
, where S is a compact non-torsion abelian group.

Theorem D and Corollary D∗ apply to prove the main results of Chapters 5, 6 and
7.

In Chapter 5 there is a first application of the results of Chapter 4. We consider a
problem related to the characterization of the abelian groups admitting pseudocompact
group topologies, which in its full generality is still a hard open question [34, Problem
0.2] (see also [8, Problem 856] and [36, Problem 892]).

If X is a non-empty set and κ is an infinite cardinal, then a set F ⊆ Xκ is ω-dense
in Xκ, provided that for every countable set A ⊆ κ and each function ϕ ∈ XA there
exists f ∈ F such that f(α) = ϕ(α) for all α ∈ A [6] (see also [34, Definition 2.6]).

Definition 6. [34, Definition 2.6] If λ and κ ≥ ω are cardinals, then Ps(λ, κ) abbreviates
the sentence “there exists an ω-dense set F ⊆ {0, 1}κ with |F | = λ”.

Moreover Ps(λ) denotes the sentence “Ps(λ, κ) holds for some infinite cardinal κ”.

This set-theoretical condition is closely related to the pseudocompact group topolo-
gies: Ps(λ, κ) holds for some cardinals λ and κ ≥ ω if and only if there exists a group
G of cardinality λ which admits a pseudocompact group topology of weight κ [15] (see
also [34, Fact 2.12 and Theorem 3.3(i)]).

Definition 7. [34, Definition 3.1(i), Theorem 3.3(ii)] An infinite cardinal κ is admissible
if there exists a pseudocompact group G such that |G| = κ, i.e., Ps(κ) holds true.

Hence, if G is a pseudocompact group, then Ps(|G|, w(G)) holds. But what about the
free rank r0(G) of G? Does Ps(r0(G)) holds whenever G is a pseudocompact abelian
group (i.e., is r0(G) admissible in case G is a pseudocompact abelian group)? This
question is contained in [34, Problem 9.11]. As mentioned in [34], this problem seems to
be an important step for the characterization of abelian groups admitting pseudocompact
group topologies. If G is torsion, the problem makes no sense because r0(G) = 0 and
Ps(κ) is defined for infinite cardinals κ.

[34, Theorem 3.1] proved that if G is a non-trivial connected pseudocompact abelian
group, then Ps(r0(G), w(G)) holds. The problem is open in general. It is possible to
ask also whether connectedness is a necessary condition in order that Ps(r0(G), w(G))
holds. Applying Theorem D, in Theorem E we generalize [34, Theorem 3.1] to w-divisible
groups, which are far from being connected (while connected pseudocompact groups are
w-divisible):

Theorem E. If G is a w-divisible pseudocompact abelian group, then Ps(r0(G), w(G))
holds.
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Moreover Example 5.15 shows that w-divisibility (and so also connectedness) is not a
necessary condition in order that Ps(r0(G), w(G)) holds, and Corollary 5.16 provides the
missing equivalence at a different level (namely that of pseudocompact topologization).

From Theorem E in Corollary 5.18 we deduce that Ps(r0(G)) holds whenever G
is a pseudocompact non-torsion abelian group, and this is precisely the answer to the
mentioned [34, Problem 9.11].

In the survey [7], exposing the history of the problem of the extremality of pseu-
docompact abelian groups, there is a wish of extending to more general cases The-
orem A, that is the final solution of the problem. On one hand it is suggested to
consider the non-abelian case. On the other hand it is proposed to consider, for any
pair of topological classes P and Q, the problem of understanding whether every topo-
logical group G ∈ P admits a dense subgroup and/or a strictly larger group topol-
ogy in Q. This problem is completely solved by Theorem A in the case P = Q =
{pseudocompact abelian groups}. In Chapter 6 we consider and completely solve the
case P = Q = {κ-pseudocompact abelian groups}.

We need first to generalize to κ-pseudocompact groups the definitions of s- and r-
extremality (for κ = ω we find exactly the definitions of s- and r-extremal pseudocompact
group):

Definition 8. Let κ be an infinite cardinal. A κ-pseudocompact group G is:

• sκ-extremal if it has no proper dense κ-pseudocompact subgroup;

• rκ-extremal if there exists no strictly finer κ-pseudocompact group topology on G.

The main result of Chapter 6 is the next theorem, which completely solves the case

P = Q = {κ-pseudocompact abelian groups}.

In particular it generalizes Theorem A for every infinite cardinal κ.

Theorem Aκ. Let κ be an infinite cardinal. For a κ-pseudocompact abelian group G
the following conditions are equivalent:

(a) G is sκ-extremal;

(b) G is rκ-extremal;

(c) w(G) ≤ κ.

Our proof of Theorem 6.2 does not depend on the particular case κ = ω, that is
Theorem A. However many ideas used to prove it are taken from previous proofs in
[12, 13, 15, 16, 21, 22, 29]. In particular we apply a set-theoretical lemma from [22] (see
Lemma 6.24), which was also a fundamental step for the proof of Theorem A. In each
of these cases we give references.
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In Section 7.1 we generalize Theorem B for every infinite cardinal κ proving Theorem
Bκ. We already have the generalization of pseudocompactness (i.e., κ-pseudocompact-
ness) and of singularity (i.e., κ-singularity) and so we need to generalize also the remain-
ing two properties: we give generalizations of ω-boundedness and introduce appropriate
properties, denoted by TDκ and TDκ, extending the property TDω for every infinite
cardinal κ. Corollary D∗ is applied in the proof of this theorem, since it gives exactly
the equivalence of conditions (b) and (c).

Theorem Bκ. Let κ be an infinite cardinal and let K be a compact abelian group. The
following conditions are equivalent:

(a) K has a proper totally dense κ-pseudocompact subgroup;

(b) K is non-κ-singular;

(c) there exists a continuous surjective homomorphism of K onto Sκ
+

, where S is a
compact non-torsion abelian group;

(d) K has the property TDκ.

As noted after Theorem C for the case κ = ω, the concept of rκ-extremal κ-
pseudocompact group is “dual” to that of minimal κ-pseudocompact group, in the
sense that a κ-pseudocompact group is minimal if there exists no strictly coarser κ-
pseudocompact group topology on G. Moreover, as an immediate corollary of Theorem
Aκ, we obtain that a proper dense κ-pseudocompact subgroup of a topological abe-
lian group cannot be either sκ- or rκ-extremal (see Corollary 7.16). This result sug-
gests the problem of the characterization of κ-pseudocompact abelian groups admitting
some proper dense minimal κ-pseudocompact subgroup. In the case of compact abelian
groups this problem becomes to characterize those compact abelian groups admitting
some proper essential dense κ-pseudocompact subgroup. Indeed in view of the foregoing
observations a dense subgroup H of a compact abelian group K is minimal if and only if
H is essential in K (see Theorem 1.50). Seen in this way, this problem is strictly related
to that solved by Theorem Bκ. In Section 7.2 we study and completely solve it, giving
for compact abelian groups properties equivalent to have some proper essential dense
κ-pseudocompact subgroup:

Theorem Cκ. Let κ be an infinite cardinal and let K be a compact abelian group. Then
the following conditions are equivalent:

(a) K admits no proper essential dense κ-pseudocompact subgroup;

(b) K is κ-singular and w(pTp(K)) ≤ κ for every prime p;

(c) K is super-κ-singular.
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This theorem generalizes Theorem C for every infinite cardinal κ.

In Theorem Aκ we consider dense κ-pseudocompact subgroups of κ-pseudocompact
abelian groups, while Theorem Bκ is about totally dense κ-pseudocompact subgroups
of compact abelian groups and Theorem Cκ about essential dense κ-pseudocompact
subgroups of compact abelian groups. So it is natural to ask when a κ-pseudocompact
abelian group admits some proper totally dense or essential dense subgroup. We solve
the compact case. Indeed in Theorem 7.22 we characterize compact abelian groups
admitting some proper totally dense subgroup and as a corollary of Theorem Cκ we
find a characterization of compact abelian groups admitting some proper essential dense
subgroup in Theorem 7.24.

In [15] Comfort and Robertson studied the compact groups K admitting some
strongly totally dense pseudocompact subgroup H which is small (i.e., |H| < |K|).
This problem is strictly related to Theorem B. [15, Theorem 6.2] showed that ZFC
cannot decide whether there exists a compact group with small strongly totally dense
pseudocompact subgroups. As a consequence of this theorem and the results in [15] it
is possible to derive an analogous result for abelian groups, that is ZFC cannot decide
whether there exists a totally disconnected compact abelian group with small totally
dense pseudocompact subgroups (see Theorem 7.27).

In Theorem 7.45, also as a consequence of results from [4, 10, 15], we prove the
counterpart of this theorem for essential dense subgroups, that is we prove that ZFC
cannot decide whether there exists a totally disconnected compact abelian group K with
small essential dense pseudocompact subgroups. But thanks to the properties of abelian
groups, we see that the condition “dense” can be removed; indeed we prove:

Theorem F. ZFC cannot decide whether there exists a compact abelian group K with
small essential pseudocompact subgroups.

In order to prove this theorem, in Section 7.4.2 we introduce a new cardinal invari-
ant, namely E(−), that measures the minimal cardinality of essential subgroups of a
topological group (see Definition 7.31). We introduce it in analogy with already existing
cardinal invariants of the same nature, namely ED(−) and TD(−), which measure the
minimal cardinality of essential dense subgroups and totally dense subgroups of a topo-
logical group respectively (see Definition 1.53). In the case of compact abelian groups
this cardinal invariant E(−), similarly to ED(−) and TD(−), turns out to be strictly
related to purely algebraic cardinal invariants, that is the p-rank and the Zp-rank for p
a prime; the definition and properties of these cardinal invariants are recalled in Section
1.2.1. The possibility to compute E(−) allows us to prove in Theorem 7.39 that it coin-
cides with ED(−) and TD(−) for compact abelian groups. This result plays a central
role for the proof of Theorem F.

The non-abelian case is an open problem and we discuss it in [28].
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In the next diagram we explain how the main results of this thesis, mentioned in
the introduction, are related. Theorem A of Comfort and van Mill is a starting point.
Also Theorems B and C, which are part of this thesis, have the same role. Indeed we
generalize these three theorems for every infinite cardinal κ, obtaining Theorems Aκ, Bκ

and Cκ respectively. A special role in this generalization is played by Theorem D and
Corollary D∗. Indeed we apply them to prove Theorems Aκ and Bκ; then Theorem Bκ

applies to prove Theorem Cκ. We do not give an explicit proof of Theorem B and C,
since they are particular cases of Theorems Bκ and Cκ respectively. As an application
of Theorem D we get also Theorem E. Theorem F is of a different nature but related to
Theorem C.
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The next diagram explains the structure of this thesis and the relations among the
chapters. Chapter 4 plays a central role: the results of the following chapters are appli-
cations of the theorems of Chapter 4. The results in Chapter 2 are about topological
groups which are not necessarily abelian. Anyway the main theorems of this thesis are
about abelian groups. The results in Chapters 2 and 6 are collected in [46] and those in
Chapters 3, 4, 5 and 7 are collected in [26, 27, 28, 45].
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Chapter 1

General results, notation and
terminology

For eventually undefined terms see [40, 42, 50, 57].
For sets X and Y , we denote by XY the set of all functions Y → X. Moreover we

denote by idX the identical function of X onto itself. Let I be a set of indices and for
each i ∈ I let Xi be a set. Then

∏
i∈I Xi is the direct product of Xi, that is∏

i∈I
Xi = {(xi)i∈I : xi ∈ Xi}.

If all Xi are the same set X, then we simply write XI and

∆XI = {x = (xi)i∈I ∈ X : xi = xj for every i, j ∈ I}

is the diagonal subset of XI .

1.1 Limit cardinals

We introduce some notations about cardinals following [57].
For a cardinal κ

κ+ = min{λ : λ > κ}, log κ = min{λ : 2λ ≥ κ} and 2<κ = sup{2λ : λ < κ}.

Furthermore κ is a strong limit cardinal if 2λ < κ for every λ < κ. When at least one of
the cardinals κ and λ is infinite we have

κ+ λ = κ · λ = max{κ, λ}.

The cofinality cf(κ) of κ is the minimal cardinality of a set I such that if A is a set
with |A| = κ, there exists a family of sets {Ai}i∈I such that |Ai| < κ for every i ∈ I
and A =

⋃
i∈I Ai. Equivalently cf(κ) is the minimal cardinal γ such that there exists a

sequence of cardinals {κλ : λ < γ} with κ = supλ<γ κλ and κλ < κ for every λ < γ. If
cf(κ) = κ, then κ is a regular cardinal. Every successor cardinal is regular.

As a consequence of König’s lemma [55] we have the next condition.

1
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Fact 1.1. If κ is an infinite cardinal, then cf(2κ) > κ.

The Generalized Continuum Hypothesis (briefly GCH) is equivalent to suppose that
2κ = κ+ for every cardinal κ. Under GCH, if κ is a limit cardinal, then κ is a strong
limit cardinal.

Claim 1.2. Let κ be a cardinal of countable cofinality and λ < κ. Then 2λ ≤ κ implies
2λ < κ.

Proof. If κ = ω, it is clear that 2λ < κ in case λ < κ. Suppose that κ > ω. If λ < ω,
then 2λ < κ. So assume that ω ≤ λ < κ. If 2λ = κ, then cf(κ) = cf(2λ) > λ by Fact 1.1.
This is not possible because λ ≥ ω and so cf(κ) > ω, against the hypothesis that it is
countable.

Claim 1.3. For a cardinal κ the following conditions are equivalent:

(a) κ is a strong limit;

(b) κ = log κ.

If κ has countable cofinality, then the following condition is equivalent to (a) and (b):

(c) 2<κ = κ.

Proof. (a)⇔(b) A cardinal κ is a strong limit if and only if 2λ < κ for every λ < κ. This
is equivalent to κ = log κ.

(a)⇒(c) Since 2λ < κ for every λ < κ, it follows that 2<κ = supλ<κ 2λ ≤ κ. Therefore
2<κ = κ.

(c)⇒(a) Since 2<κ = κ, then 2λ ≤ κ for every λ < κ. By Claim 1.2 this implies that
2λ < κ for every λ < κ, that is κ is a strong limit.

In the second part of this claim the hypothesis that κ has countable cofinality is used
only in (c)⇒(a), where Claim 1.2 applies.

The symbol c stands for the cardinality of the continuum.

1.2 Abelian groups

We denote by Q, Z, P, N and N+ respectively the field of rationals, the ring of integers,
the set of primes, the set of natural numbers and the set of positive integers. For m ∈ N+,
we use Z(m) for the finite cyclic group of order m. For p ∈ P the symbol Zp indicates
the ring of p-adic integers and Z(p∞) the Prüfer group.

For a group G we denote the neutral element by eG. If G is abelian by 0.
Let G be an abelian group. An element x ∈ G is torsion if there exists n ∈ N+

such that nx = 0. The subgroup of all torsion elements of G is t(G). For m ∈ N+

let G[m] = {x ∈ G : mx = 0}. We say that G is torsion free if t(G) = {0} and that
G is torsion if it coincides with t(G). Moreover G is bounded torsion if G = G[m]
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for some m ∈ N+; equivalently in this case G is of finite exponent m. For m ∈ N let
mG = {mx : x ∈ G}.

For any abelian group G and H let Hom(G,H) be the group of all homomorphisms
from G to H. If G and H are algebraically isomorphic, then we write G ∼= H. If S is a
subset of G then 〈S〉 is the smallest subgroup of G containing S, i.e., the subgroup of G
generated by S.

Let I be a set of indices and for each i ∈ I let Gi be an abelian group. Then
∏
i∈I Gi

is the direct product and
⊕
Gi is the direct sum of the groups Gi, that is

⊕
i∈I

Gi =

{
x ∈

∏
i∈I

Gi : |supp(x)| is finite

}
,

where supp(x) = {i ∈ I : xi 6= 0} is the support of x = (xi)i∈I ∈
∏
i∈I Gi. If I is empty

then
∏
i∈I Gi =

⊕
i∈I Gi = {0}. For a cardinal κ we denote by Gκ the product and by

G(κ) the direct sum of κ many copies of G, that is
⊕

κG.
If κ is a cardinal < |I| and G =

∏
i∈I Gi, let

ΣκG = {x ∈ G : |supp(x)| ≤ κ}

be the Σκ-product of G. For κ = ω, ΣωG is ΣG (i.e., the Σ-product centered at 0 of G).
Moreover, if G = HI , then ∆G is a subgroup of G, namely the diagonal subgroup of G.
If ω ≤ κ < |I|, then ∆G ∩ ΣκG = {0}.

1.2.1 Ranks

Definition 1.4. A subset S of an abelian group G is independent if
∑n

i=1 zisi = 0 for
s1, . . . , sn ∈ S, z1, . . . , zn ∈ Z and n ∈ N+, implies z1 = . . . = zn = 0.

Definition 1.5. An abelian group F is free if there exists an independent subset S of
F , such that F = 〈S〉.

An abelian group F is free if and only if it is isomorphic to Z(κ), where κ is a cardinal
uniquely determined by F . Note that |F | = κ · ω.

If G is an abelian group, applying Zorn’s lemma it is possible to prove the existence
of a maximal independent subset of G. If S and T are maximal independent subsets of
G, then |S| = |T |. This allows us to give the following definition.

Definition 1.6. Let G be an abelian group. The free rank r0(G) of G is the cardinality
of a maximal independent subset of G.

Lemma 1.7. Let G be an abelian group and N a subgroup of G. Then

r0(G) = r0(G/N) + r0(N).

Let G be an abelian group and let p ∈ P. The p-eth socle of G is the subgroup
Socp(G) = {x ∈ G : o(x) = p}. It is a vector space over the field Fp of p many elements.
Moreover the subgroup Soc(G) =

⊕
p∈P Socp(G) is the socle of G.
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Definition 1.8. Let G be an abelian group and let p ∈ P. The p-rank of G is rp(G) =
dimFp Socp(G).

Note that Socp(G) ∼=
⊕

rp(G) Z(p). Moreover |Socp(G)| = ω ·rp(G) whenever Socp(G)
is infinite.

Lemma 1.9. Let p ∈ P, let G be an abelian group and N a subgroup of G. Then

rp(G) = rp(G/N) + rp(N).

Definition 1.10. For an abelian group G the rank of G is r(G) = r0(G) +
∑

p∈P rp(G).

If G is an infinite abelian group then |G| = ω · r(G).

Lemma 1.11. If G is an abelian group and N a subgroup of G, then

r(G) = r(G/N) + r(N).

Since abelian groups are Z-modules, in analogy with the free rank of abelian groups,
it is possible to introduce the R-rank of R-modules, where R is a integral domain, i.e.,
a commutative unitary ring without zero-divisors.

Definition 1.12. Let R be an integral domain and let M be an R-module. A subset S
of M is R-independent if

∑n
i=1 risi = 0 for s1, . . . , sn ∈ S, r1, . . . , rn ∈ R and n ∈ N+,

implies r1 = . . . = rs = 0.

As in the particular case of abelian groups, applying Zorn’s lemma it is possible to
prove the existence of a maximal R-independent subset of an R-module M . If S and
T are maximal R-independent subsets of M , then |S| = |T |. This allows us to give the
next definition.

Definition 1.13. Let R be an integral domain and let M be an R-module. The R-rank
rankR(G) of M is the cardinality of a maximal R-independent subset of G.

Lemma 1.14. Let R be an integral domain and let M , N be R-modules. Let ϕ : M → N
be a surjective homomorphism of R-modules. Then rankR(M) ≥ rankR(N).

Proof. Let S be a maximal R-independent subset of N . Then rankR(N) = |S|. For
every y ∈ S let x ∈ M be such that ϕ(x) = y. Then the subset T of all such element
x has the same cardinality of S and it is R-independent. Indeed, if

∑n
i=1 riti = 0 for

t1, . . . , tn ∈ T , r1, . . . , rn ∈ R and n ∈ N+, then
∑n

i=1 riϕ(ti) = 0; since ϕ(ti) ∈ S for
every i ∈ {1, . . . , n}, this implies that r1 = . . . = rn = 0. Hence rankR(M) ≥ |T | =
|S| = rankR(N).

We are interested in the case R = Zp, that is in the Zp-rank of Zp-modules. We give
a relation among the cardinality, the p-rank and the Zp-rank of an infinite Zp-module:

Lemma 1.15. Let p ∈ P. If M is an infinite Zp-module, then

|M | =

{
ω · rp(M) if rankZp(M) = 0
c · rankZp(M) · rp(M) if rankZp(M) ≥ 1.
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Proof. We know that |M | = |M/t(M)| · |t(M)|. Since M is infinite, at least one of
|M/t(M)| and |t(M)| in infinite. If rankZp(M) = 0, then |t(M)| is infinite and |M | =
|t(M)| = ω ·rp(M). Suppose that rankZp(M) ≥ 1. Then |M | ≥ c. Moreover |M/t(M)| =
c · rankZp(M) and rp(M) is equal either to rp(M) or to ω · rp(M). Therefore |M | =
|M/t(M)| · |t(M)| = c · rankZp(M) · rp(M).

Fact 1.16. If G is an abelian group such that r0(G) ≥ c, then there exists a surjective
homomorphism G→ T.

Proof. Since |T| = c, there exists a surjective homomorphism f of the free abelian group
Z(c) onto T. Moreover there exists an injective homomorphism Z(c) → G, because
r0(G) ≥ c. Since T is divisible, f can be extended to a surjective homomorphism
G→ T.

1.2.2 Abelian p-groups

Let p ∈ P and let G be an abelian group. An element x ∈ G is p-torsion if there exists
n ∈ N such that pnx = 0. Let tp(G) be the subgroup of all p-torsion elements of G. We
call an abelian group X p-group (or p-torsion) if all elements of X are p-torsion. We
call it bounded p-torsion in case there exists n ∈ N such that pnx = 0 for every x ∈ X;
equivalently it has exponent pn for some n ∈ N.

Remark 1.17. Let p ∈ P and let X be an abelian p-group. According to [42, Theorem
32.3] X has a basic subgroup B0, in other words there exist cardinals αn, with n ∈ N+,
such that:

B0
∼=
⊕∞

n=1 Z(pn)(αn),
B0 is pure (i.e., B0 ∩ pnX = pnB0 for every n ∈ N) and
X/B0 is divisible;

so X/B0
∼= Z(p∞)(σ) for some cardinal σ, because X/B0 is a divisible abelian p-group

[42, Theorem 23.1]. The definition of basic subgroup was given in [56].
Let m ∈ N+, and let

B1,m =
m⊕
n=1

Z(pn)(αn) and B2,m =
∞⊕

n=m+1

Z(pn)(αn).

Then we prove that
X = X1,m ⊕B1,m,

where X1,m = pmX+B2,m. Indeed, X = pmX+B0 because X/B0 is divisible. Moreover,
this is a direct sum as X1,m∩B1,m = {0}; in fact, if z ∈ X1,m∩B1,m, then z = b1 ∈ B1,m

and z = x + b2, where x ∈ X1,m, b2 ∈ B2,m. It follows that x = b1 − b2 ∈ B0 ∩ pmX.
By the purity of B0, we have B0 ∩ pmX = pmB0 ⊆ B2,m and this yields b1 = 0, since
B1,m ∩B2,m = {0}. Moreover

X/B0
∼= X1,m/B2,m.
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In [62, Proposition 18.6] the condition X = X1,m ⊕ B1,m was proved to be also
sufficient to be basic for a subgroup B which is direct sum of cyclic groups.

Let p ∈ P. In [66] (see [42, §35]) the final rank of an abelian p-group X was defined
as

finr(X) = inf
n∈N

rp(pnX).

The next example shows which are all the abelian p-groups of finite final rank.

Example 1.18. Let p ∈ P and let X be an abelian p-group. Let m ∈ N. Then

finr(X) = m if and only if X ∼= Z(p∞)m ⊕B0, where B0 is bounded torsion.

To prove this result assume first that X ∼= Z(p∞)m ⊕ B0, where B0 is bounded
torsion. Since Z(p∞)m is divisible, finr(Z(p∞)m) = m. Moreover, for the k0 ∈ N
such that pk0 is the exponent of B0, we have rp(pkB0) = 0 for every k ≥ k0. Then
finr(Z(p∞)m ⊕B0) = m.

Suppose that finr(X) = m for some m ∈ N. Then there exists k1 ∈ N such that
rp(pkX) = m for every k ∈ N with k ≥ k1. By Remark 1.17 there exists a basic
subgroup B0

∼=
⊕∞

n=1 Z(pn)(αn) of X such that X/B0
∼= Z(p∞)(σ) for some cardinals

αn, with n ∈ N+, and σ. If αn > 0 for infinitely many n ∈ N+, then rp(pkB0) = ω for
every k ∈ N. In this case finr(X) = ω, but it is not possible in view of our hypothesis.
Consequently B0 is bounded torsion, i.e, there exists k0 ∈ N such that pk0B0 = {0}.

Let k ∈ N be such that k ≥ max{k0, k1}. Following the notation of Remark 1.17, let
B1,k =

⊕k
n=1 Z(pn)(αn), B2,k =

⊕∞
n=k+1 Z(pn)(αn) and X1,k = pkX +B2,k. In our case

B2,k = {0}

and so
pkX = X1,k

∼= X1,k/B2,k
∼= X/B0

∼= Z(p∞)(σ)

in view of Remark 1.17. Since rp(pkX) = m, hence σ = m.
By Remark 1.17 we have X = X1,k0 ⊕ B1,k0 . As noted before B2,k0 = {0}. This

implies X1,k0
∼= X1,k0/B2,k0

∼= X/B0
∼= Z(p∞)(σ) and B0 = B1,k0 . Hence

X = X1,k0 ⊕B1,k0
∼= Z(p∞)m ⊕B0.

According to [62] for a basic group B of an abelian p-group X the final rank of X is
a upper bound for the p-rank of X/B, in other words

rp(X/B) ≤ finr(X) = inf
n∈N

rp(pnX).

In view of this result, a basic subgroup B of an abelian p-group X is called infrabasic
if rp(X/B) is maximal. Moreover every abelian p-group X has an infrabasic subgroup,
that is X has a basic subgroup B such that rp(X/B) = finr(X) [62, Theorem 20.4].
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1.3 Topological spaces

If S is a subset of a topological space X then S
X denotes the closure of S in X. We

write S when there is no possibility of confusion.

Definition 1.19. Let X be a Tychonov topological space. The Čech-Stone compactifica-
tion βX of X is the compact space βX with the dense topological embedding i : X → βX,
such that for every continuous function f : X → [0, 1] there exists a continuous function
f ′ : βX → [0, 1] which extends f .

Let f : X → Y be a function, where X and Y are topological spaces. We denote by
Γf the graph of f , that is

Γf = {(x, f(x)) : x ∈ X}.
The following is the closed graph theorem.

Theorem 1.20. Let X and Y be topological spaces, with Y Hausdorff, and let f : X → Y
be a function.

(a) If f is continuous then Γf is closed in X × Y .

(b) If Y is compact, then f is continuous if and only if Γf is closed in X × Y .

The hypothesis that the codomain has to be Hausdorff is necessary, as shown by the
following example. For a set X let δX and ιX denote the discrete and the indiscrete
topology of X respectively.

Example 1.21. Let (X, τ) be a Hausdorff topological space with |X| ≥ 2; for example
take τ = δX . Then idX : (X, τ) → (X, ιX) is continuous and ΓidX = ∆X. Since the
topology on the codomain is indiscrete, ΓidX is dense in (X, τ)× (X, ιX) and so it is not
closed.

We recall the definitions of some cardinal invariants. For a topological space X,

• the weight w(X) of X is the minimum cardinality of a base for the topology on X
and

• the density d(X) of X is the minimal cardinality of a dense subset of X.

Moreover, if x ∈ X,

• the character χ(x,X) at x of X is the minimal cardinality of a basis of the filter
of the neighborhoods of x in X, and

• the character of X is χ(X) = supx∈X χ(x,X).

Analogously

• the pseudocharacter ψ(x,X) at x of X is the minimal cardinality of a family F of
neighborhoods of x in X such that

⋂
U∈F U = {x}, and

• the pseudocharacter of X is ψ(X) = supx∈X ψ(x,X).

In general for a Tychonov topological space X we have

ψ(X) ≤ χ(X) ≤ w(X) ≤ 2|X| and |X| ≤ 2w(X).
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1.4 Topological groups

As said in the introduction, all topological groups in this thesis are supposed to be
Hausdorff. If G and H are topological groups and they are topologically isomorphic,
then we write G ∼=top H.

Lemma 1.22. Let G and G1 be topological abelian groups such that there exists a con-
tinuous surjective homomorphism f : G→ G1, and let H be a subgroup of G1.

(a) If H is proper, then f−1(H) is proper.

If f is open, then:

(b) if H is dense in G1, then f−1(H) is dense in G.

Proof. (a) The subgroup f−1(H) is proper in G since H is proper in G1 and f(f−1(H)) =
H since f is surjective.

(b) We have to prove that f−1(H) = G. Since f−1(H) contains ker f , this is equiv-
alent to

f(f−1(H)) = G1.

Observe that

H = f(f−1(H)) ⊆ f(f−1(H)) ⊆ f(f−1(H)) = H = G1.

Since f−1(H) is closed and contains ker f , its image f(f−1(H)) is closed. Consequently
f(f−1(H)) = H = G1.

The cardinal invariants introduced in the previous section for topological spaces have
a simpler description in the case of topological groups and have additional properties.
Indeed the character has the same value at each point, since topological groups are
homogeneous topological spaces. Then χ(G) is the minimal cardinality of a local base at
eG of the topology on a group G. Analogously for the pseudocharacter of a topological
group, the value of which is that at eG. Moreover we use often the following properties
of the weight.

Fact 1.23. If N is a subgroup of a topological group G, then

w(G) = w(G/N) · w(N).

If G =
∏
i∈I Gi is a product of topological groups, then w(G) = |I| · supi∈I w(Gi).

A net {gα}α∈A in a topological group G is a Cauchy net if for every neighborhood U
of eG in G there exists α0 ∈ A such that g−1

α gβ ∈ U and gβg−1
α ∈ U for every α, β > α0.

A Hausdorff topological group G is complete (in the sense of Raikov) if every Cauchy
net in G converges in G.

Theorem 1.24. For every Hausdorff topological group G there exists a complete topo-
logical group G̃ and a topological embedding i : G → G̃ such that i(G) is dense in G̃.
Moreover, if f : G→ H is a continuous homomorphism and H is a complete topological
group, then there is a unique continuous homomorphism f̃ : G̃→ H with f = f̃ ◦ i.
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Therefore every Hausdorff topological group has a unique (up to topological isomor-
phisms) (Raikov-)completion (G̃, i), briefly denoted by G̃, and we can assume that G is
a dense subgroup of G̃.

Proposition 1.25. Let G, H be topological groups and let f : G → H be a continuous
isomorphism. Then there exists a unique continuous homomorphism f̃ : G̃ → H̃ which
extends f .

Definition 1.26. A topological group G is locally compact if there exists a compact
neighborhood of eG in G.

Theorem 1.27 (Structure theorem of locally compact abelian groups). If L is a locally
compact abelian group, then L is topologically isomorphic to Rn ×K, where n ∈ N and
K is a topological abelian group with a compact open subgroup K0.

A theorem of the following form is known as an open mapping theorem. We give it
here for compact groups, but it has a more general version in which G is locally compact
and σ-compact and H is locally compact. (A Tychonov topological space is σ-compact
if it is the union of countably many compact subsets.)

Theorem 1.28. Let G and H be topological groups. If G is compact and f : G→ H is
a continuous surjective homomorphism, then f is open.

Theorem 1.29. Let G be a topological group and let N be a dense subgroup of G.
If L is another subgroup of G and π : G → G/L is the canonical projection, then
π �N : N → π(N) is open if and only if N ∩ L = L.

1.4.1 Pontryagin-van Kampen duality

For the results in this section we refer to [31, 50].
The circle group T is identified with the quotient group R/Z of the reals R and carries

its usual topology.
A character of a topological abelian group G is a continuous homomorphism from G

to T. Define
Ĝ = {χ ∈ Hom(G,T) : χ character of G};

it is the dual group of G if it is endowed with the compact-open topology : the family

{W (K,U) : K ⊆ G is compact and U is an open neighborhood of 0},

where W (K,U) = {χ ∈ Ĝ : χ(K) ⊆ U}, is a base of the neighborhoods of 0 in Ĝ.
For a subset S of G the annihilator of S in Ĝ is A(S) = {χ ∈ Ĝ : χ(A) = {0}} and for

a subset T of Ĝ the annihilator of T in G is A(T ) = {x ∈ G : χ(x) = 0 for every χ ∈ T}.
We have that A(A(S)) = S.

Theorem 1.30 (Pontryagin duality theorem). [50, 58] Let L be a locally compact abelian
group. Then L̂ is a locally compact abelian group and
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(a) the assignment H 7→ A(H) is an order-inverting bijection (i.e., a Galois corre-
spondence) between the family of all closed subgroups of L and the family of all
closed subgroups of L̂;

(b) for every closed subgroup H of L the dual group Ĥ is topologically isomorphic to
L̂/A(H);

(c) ωL : L → ̂̂
L, defined by ωL(x) : L̂ → T for every x ∈ L, where ωL(x)(χ) = χ(x)

for every χ ∈ L̂, is a canonical topological isomorphism;

(d) L is compact if and only if L̂ is discrete;

(e) L̂×H is topologically isomorphic to L̂× Ĥ.

In view of the canonical topological isomorphism in (c) it is possible to identify L

and ̂̂L.

Lemma 1.31. Let L be a locally compact abelian group and H a subgroup of L. Then
A(H) is topologically isomorphic to L̂/H.

As a consequence of Theorem 1.30 and this lemma we have the following results.

Fact 1.32. Let L be a locally compact abelian group. Then

(a) L̂[p] ∼=top L̂/pL; and

(b) c(L) = A(t(L̂)).

Fact 1.33. For a topological abelian group K, which is either compact or discrete, and
for m ∈ N+, m̂K is topologically isomorphic to mK̂.

Proof. By Theorem 1.30(b) m̂K is topologically isomorphic to K̂/K̂[m], since A(mK) =
K̂[m]. There exists a continuous isomorphism K̂/K̂[m] → mK̂ and it is open; this is
true by Theorem 1.28 in case K is compact and it is obvious if K is discrete. Hence
m̂K ∼=top mK̂.

If K is a topological abelian group which is either compact or discrete, then K is
bounded torsion if and only if K̂ is bounded torsion.

Example 1.34. It is known that T̂ is Z, R̂ is R, Ẑp is Z(p∞) for p ∈ P, and Ẑ(m) is
Z(m) for m ∈ N+.

Also the next is a consequence of Theorem 1.30 and Lemma 1.31.

Lemma 1.35. Let L be a locally compact abelian group and

{0} → H → L→ L/H → {0}

a short exact sequence. Then

0→ L̂/H ∼= A(H)→ L̂→ Ĥ ∼= L̂/A(H)→ {0}

is a short exact sequence as well.
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We often apply these results in the following chapters referring to them as Pontryagin
duality in general, that is without a precise reference.

1.4.2 Pseudocompact and precompact groups

As a direct consequence of the definition continuous image of a pseudocompact is pseudo-
compact. The next is a useful property about the algebraic structure of pseudocompact
abelian groups.

Fact 1.36. [16, 21, 34] Let G be a pseudocompact abelian group. Then either G is
bounded torsion or r0(G) ≥ c.

The next theorem about the cardinality of pseudocompact groups is due to van
Douwen.

Theorem 1.37. [67] If G is an infinite pseudocompact abelian group, then

• |G| ≥ c, and

• if |G| is a strong limit, cf(|G|) > ω.

From this theorem it follows that a pseudocompact abelian group is either finite or
of size ≥ c.

A topological group G is precompact if for every open neighborhood U of 0 in G there
exists a finite subset F of G such that FU = UF = G. Furthermore G is precompact if
and only if its completion G̃ is compact [69].

Let G be an abelian group. Then G# denotes G endowed with the Bohr topology ,
i.e., the initial topology of all characters in Hom(G,T). As all group topologies generated
by characters, G# is precompact. If A ≤ Hom(G,T), let TA denote the initial topology
on G of all characters in A; it is proved in [17] that

w(G,TA) = |A|. (1.1)

Moreover from [53] it is known that

|Hom(G,T)| = 2|G|. (1.2)

Claim 1.38. If G is an abelian group, then w(G#) = 2|G|.

Proof. Since G# = (G,TG), from (1.1) and (1.2) it follows that w(G#) = |Hom(G,T)| =
2|G|.

Every pseudocompact group is necessarily precompact [18, Theorem 1.1]. The con-
verse implication is not true in general:

Claim 1.39. [19] If G is an infinite abelian group, then G# is non-pseudocompact.

Proof. It can be proved that G admits a subgroup H such that |G/H| = ω. In G# every
subgroup is closed; in particular H is closed. Then G/H is pseudocompact of size ω.
This is in contradiction with Theorem 1.37.
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1.5 General properties of compact groups

For p ∈ P and for a subset π ⊆ P consider the metrizable compact abelian groups

Gp =
∏
n∈N+

Z(pn) and Sπ =
∏
q∈π
Z(q).

Clearly, Gp is non-torsion, while Sπ is non-torsion if and only if π is infinite. These
groups play a special role in the main chapters of this thesis.

In the following fact we recall some general properties of compact abelian groups,
which are used in this thesis (without giving explicit references).

Fact 1.40. [50, 51] Let K be a compact infinite abelian group. Then:

(a) |K| = 2w(K) and w(K) = |K̂|;

(b) d(K) = logw(K);

(c) ψ(K) = χ(K) = w(K);

(d) the following conditions are equivalent:

1. K is connected;

2. K is divisible;

3. K̂ is torsion free.

The first property in (a) implies that |K| > w(K). This does not hold true in general
for precompact groups. Indeed w(G#) = 2|G| > |G| for every infinite abelian group G
by Claim 1.38.

For a topological group G we denote by c(G) the connected component of the neutral
element eG in G. A topological group G is connected if G = c(G), while G is said to be
totally disconnected if c(G) is trivial.

The following is a consequence of Pontryagin duality.

Fact 1.41. Let K be a compact abelian group. Then there exists a continuous surjective
homomorphism K → Tw(c(K)).

Proof. In fact, if X = K̂, X has X/t(X) as a quotient and X/t(X) ∼= ĉ(K) by Fact
1.32(b) and Theorem 1.30(b). Consequently X/t(X) is a torsion free group of cardinality
w(c(K)) and so there exists an injective homomorphism Z(w(c(K))) → X/t(X). Therefore
there exists an injective homomorphism Z(w(c(K))) → X. By Lemma 1.35 there exists a
continuous surjective homomorphism K → Tw(c(K)).

We recall that totally disconnected compact abelian groups are precisely profinite
abelian groups [61]. Profinite groups are topological groups isomorphic to inverse limits
of an inverse system of finite groups. For a prime p, a group G is a pro-p group if it is
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the inverse limit of an inverse system of finite p-groups. Equivalently a pro-p group is a
profinite group G such that G/N is a finite p-group for every open normal subgroup N
of G. Moreover the compact Zp-modules are precisely the abelian pro-p groups.

The following are other applications of Pontryagin duality.

Fact 1.42. If L is a locally compact abelian group, then:

(a) L is profinite if and only if L̂ is torsion;

(b) L is a pro-p group if and only if L̂ is p-torsion.

Lemma 1.43. Let K be a compact abelian group. Then there exists a totally discon-
nected closed subgroup N of K such that K = N + c(K).

Proof. Let X = K̂ and let S be a maximal independent subset of X. Put Y = 〈S〉 and
N = A(Y ). Thus N is a closed subgroup of K. By Fact 1.42(a) N is totally disconnected,
since N ∼=top X̂/Y and X/Y is torsion. Recall that c(K) = A(t(X)) by Fact 1.32(b).
Consequently K = N + c(K), because Y ∩ t(X) = {0} and so K = A(Y ∩ t(X)) =
A(Y ) +A(t(X)) = N + c(K).

Let p be a prime number and K a compact abelian group. The topological p-
component of K is the subgroup Kp = {x ∈ K : pnx → 0 in K, where n ∈ N}
[31]. The p-component Tp(K) of K is the closure of Kp.

The subgroup Kp has a natural structure of Zp-module, which is very useful: iden-

tifying K with ̂̂
K in view of Theorem 1.30(c), Kp can be viewed as Hom(K̂,Z(p∞))

(while K is Hom(K̂,T)) [31, §4.1]. So Kp has its Zp-rank. This structure of Zp-module
permits to have a better knowledge of Kp. For example, if x ∈ Kp, denoting with 〈x〉Zp
the Zp-submodule of Kp generated by x, then

〈x〉 = 〈x〉Zp ∼=top

{
Zp
Z(pn) for some n ∈ N+

For example K = T is not a Zp-module, but for every p ∈ P Kp = Z(p∞) is a
Zp-module.

For a compact abelian group K and p ∈ P we define

ρp(K) = rankZp(Kp).

So this is the generalization of the Zp-rank to all compact abelian groups: the Zp-rank
can be defined properly only for Zp-modules, but we have seen that, if K is a compact
abelia group, Kp is a Zp-module for every p ∈ P.

For the sake of easier reference we recall here also the following useful and well known
property of the totally disconnected compact abelian groups.

Remark 1.44. Let K be a compact abelian group and p ∈ P. Following [31] the p-
component can be defined also as Tp(K) =

⋂
{nK : n ∈ N+, (n, p) = 1}. Thanks to

this equivalent definition it is easy to see that Tp(K) ⊇ c(K) for every p ∈ P and so
mTp(K) ⊇ mc(K) = c(K) for every m ∈ N+ and for every p ∈ P.
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(a) If N is a closed subgroup of K then Tp(N) = Np ⊆ Kp = Tp(K).

(b) If K is totally disconnected, Kp is closed and so Tp(K) = Kp for every p ∈ P; each
Kp is a compact Zp-module. Moreover K ∼=top

∏
p∈PKp and every closed subgroup

N of K is of the form N ∼=top
∏
p∈PNp, where each Np is a closed subgroup of Kp

[5],[31, Proposition 3.5.9].

(c) Let L = K/c(K) and let π be the canonical projection of K onto L. Then π �Tp(K):
Tp(K)→ Tp(L) = Lp is surjective and Tp(K) = π−1(Lp) [31, Proposition 4.1.5].

(d) If w(c(K)) ≤ κ, where κ is an infinite cardinal, then:

(d1) w(Tp(K)) ≤ κ if and only if w(Lp) ≤ κ, and

(d2) w(pTp(K)) ≤ κ if and only if w(pLp) ≤ κ.

(e) If K is connected, then Kp is dense in K. Consequently, if H ≤ K, then Hp =
Kp ∩H.

(f) If Kp = {0}, then K is totally disconnected.

1.5.1 Properties of compact Zp-modules

Lemma 1.45. Let p ∈ P and K be a compact Zp-module. Then K has a closed subgroup
N such that:

(a) N ∼=top Zσp for some cardinal σ;

(b) K/N ∼=top
∏∞
n=1 Z(pn)αn, for some cardinals αn, with n ∈ N+.

(c) π(K[pn]) = (K/N)[pn] for every n ∈ N+, where π : K → K/N is the canonical
projection.

In particular 0→ N → K → K/N → 0 is a short exact sequence.

Proof. (a,b) The dual X of K is a p-group by Fact 1.42(b). Then it is possible to apply
Remark 1.17 to find a basic subgroup B0

∼=
⊕∞

n=1 Z(pn)(αn) of X, for some cardinals
αn, n ∈ N+, with X/B0

∼= Z(p∞)(σ) for some cardinal σ. By Pontryagin duality we
can identify K and X̂. Let B = B̂0 and N = A(B0) ∼=top X̂/B0

∼=top Zσp by Pontryagin
duality. Moreover K/N ∼=top B ∼=top

∏∞
n=1 Z(pn)αn , again applying Pontryagin duality.

(c) It is clear that π(K[pn]) ⊆ (K/N)[pn]. To prove that π(K[pn]) ⊇ (K/N)[pn], first
note that for

W = {x ∈ K : pnx ∈ N},

we have W = π−1((K/N)[pn]) (so in particular π(W ) = (K/N)[pn]). Then it is sufficient
to prove that

W = N +K[pn].

Since W and N + K[pn] are closed subgroups, to prove that they coincide it suffices
to prove that their annihilators coincide. Since W = π−1((K/N)[pn]), obviously W ⊇
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N + K[pn]. Consequently A(W ) ⊆ A(N) ∩ A(K[pn]) = B0 ∩ pnX = pnB0. The last
equality follows from the purity of B0 (see Remark 1.17). But we have also

A(W ) = {χ ∈ X : (∀x ∈ K) pnx ∈ N ⇒ χ(x) = 0} ⊇ pnA(N) = pnB0.

Therefore A(W ) = A(N) ∩A(K[pn]), that is W = N +K[pn].

Lemma 1.46. Let κ be an infinite cardinal, let p ∈ P, and let K be a compact Zp-
module. Suppose that there exists m ∈ N+ such that w(pmK) ≤ κ, but w(pm−1K) > κ.
Then there exist a compact Zp-module Km of weight ≤ κ and a compact bounded torsion
abelian group Bm ∼=top

∏m
n=1 Z(pn)αn, for some cardinals αn, with n ∈ N+, such that

K ∼=top K
′ ×B

and αm > κ.

Proof. The dual X of K is a p-group by Fact 1.42. Then it is possible to apply Remark
1.17 to find a basic subgroup of X, namely B0

∼=
⊕∞

n=1 Z(pn)(αn), for some cardinals
αn, with n ∈ N+, such that X/B0

∼= Z(p∞)(σ) for some cardinal σ. Following the
notations of Remark 1.17 let B1,m =

⊕m
n=1 Z(pn)(αn) and B2,m =

⊕∞
n=m+1 Z(pn)(αn);

then X = X1,m ⊕B1,m, where X1,m = pmX +B2,m.
Let

Km = X̂1,m and Bm = B̂1,m
∼=top

m∏
n=1

Z(pn)αn .

Thanks to Pontryagin duality we can write

K ∼=top Km ×Bm.

By the hypothesis w(pm−1K) > κ. Moreover

pm−1K ∼=top p
m−1(Km ×Bm) = pm−1Km × pm−1Bm.

Since |X1,m| ≤ κ, because |pmX| ≤ κ, it follows that |B2,m| ≤ κ. Consequently w(Km) =
|X1,m| ≤ κ. Hence w(pm−1Bm) > κ, that is αm > κ.

Under the hypotheses and notations of Lemma 1.46, since X1,m/B2,m
∼= X/B0

∼=
Z(p∞)(σ) in view of Remark 1.17, by Pontryagin duality Km has a subgroup Nm isomor-
phic to Zσp such that Km/Nm

∼=top
∏∞
n=1 Z(pn)αn .

1.5.2 Essential dense and totally dense subgroups

Lemma 1.47. Let G be a topological abelian group and let H be a subgroup of G.

(a) If H is essential in G, then H ⊇ Soc(G).

(b) If H is totally dense in G, then H ⊇ t(G).
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Proof. (a) If x ∈ Soc(G), then 〈x〉 is a finite (so closed) subgroup of G of prime exponent;
since H is essential in G, H ∩ 〈x〉 6= {0} and so H ≥ 〈x〉.

(b) If x ∈ t(G), then 〈x〉 is a finite (so closed) subgroup of G; since H is totally dense
in G, H ∩ 〈x〉 is dense in 〈x〉 and so H ≥ 〈x〉.

Example 1.48. The subgroup t(T) = Q/Z of T is totally dense in T and |Q/Z| < |T|. In
view of Lemma 1.47(b) a subgroup H of T is totally dense in T if and only if H ⊇ Q/Z.

Analogously Soc(T) is essential in T, with |Soc(T)| < |T|, and in view of Lemma
1.47(a) a subgroup H of T is essential in T if and only if H ⊇ Soc(T).

The next lemma shows that essentiality and total density preserve by taking inverse
images of continuous surjective homomorphisms.

Lemma 1.49. Let K and K1 be compact abelian groups such that there exists a contin-
uous surjective homomorphism f : K → K1, and let H be a subgroup of K1. Then:

(a) if H is essential in K1, then f−1(H) is essential in K;

(b) if H is totally dense in K1, then f−1(H) is totally dense in K.

Proof. (a) Let N be a non-trivial closed subgroup of K. Since N is compact and f is
continuous, f(N) is compact and so f(N) is closed in K1. If f(N) is non-trivial, then
H ∩ f(N) 6= {0} and so there exists h 6= 0 in H ∩ f(N); hence h = f(n) for some n 6= 0
in N and consequently 0 6= n ∈ f−1(H) ∩N . If f(N) = {0}, then N ⊆ ker f ⊆ f−1(H).
This proves that f−1(H) is essential in K.

(b) Let N be a non-trivial closed subgroup of K. Since N is compact and f is
continuous, f(N) is compact and so f(N) is closed in K1. If f(N) is non-trivial, then
H ∩ f(N) is dense in f(N) and so f−1(H) ∩ N is dense in N . If f(N) = {0}, then
N ⊆ ker f ⊆ f−1(H). This proves that f−1(H) is totally dense in K.

The next “(total) minimality criterion” shows that for dense subgroups of compact
groups to be minimal is equivalent to be essential and to be totally minimal is equivalent
to be totally dense. So it is possible to choose the point of view in studying them.

Theorem 1.50. [30, 31, 48, 59, 64] A dense subgroup H of a compact group K is
minimal (respectively, totally minimal) if and only if H is essential (respectively, totally
dense) in G.

The following theorem is a criterion for the (total) minimality of a subgroup of a
compact abelian group. It follows from [31, Theorem 4.3.7] or [4, Theorem 3.1]. It shows
that essentiality and total density can be studied locally. They depends on intersections
with closed subgroups isomorphic either to Z(p) or to Zp.

Theorem 1.51. Let K be a compact abelian group and H a subgroup of K. Then the
following conditions are equivalent:

(a) H is essential (respectively, totally dense);
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(b) H ∩ N 6= {0} (respectively, H ∩ N 6≤ pN) for every p ∈ P and for every closed
subgroup N of K such that N is isomorphic either to Z(p) or to Zp;

(c) Socp(K) ⊆ H and H ∩ N 6= {0} (respectively, tp(K) ⊆ H and H ∩ N 6≤ pN) for
every p ∈ P and for every closed subgroup N of K such that N is isomorphic to
Zp.

This theorem shows that the total density and the essentiality of a dense subgroup
of a compact abelian group K can be verified in Kp for every p ∈ P, as stated in the next
result. Indeed a closed subgroup of K isomorphic either to Zp or to Z(p) is contained in
Kp.

Corollary 1.52. Let K be a compact abelian group and H a subgroup of K. Then H is
essential (respectively, totally dense) in K if and only if H∩Kp is essential (respectively,
totally dense) in Kp for every p ∈ P.

We recall the definition of two cardinal invariants which measure the size of essential
dense and totally dense subgroups respectively. We study them in the case of compact
abelian groups, but they can be defined for arbitrary topological groups.

Definition 1.53. For a topological group G let

ED(G) = min{|H| : H ≤ G essential dense}, and
TD(G) = min{|H| : H ≤ G totally dense}.

These cardinal invariants were introduced for compact groups in [65] (see also [31,
§5.3]) under the name M(−) and TM(−) respectively. Indeed, for a compact group K
M(K) was defined as the minimal cardinality of a dense minimal subgroup of K and
TM(K) as the minimal cardinality of a dense totally minimal subgroup of K. They are
the same as ED(K) and TD(K) in view of Theorem 1.50.

Both ED(−) and TD(−) are monotone under taking closed subgroups. Moreover
TD(−) is monotone also under taking quotients by closed subgroups. In general, since a
totally dense subgroup is necessarily essential dense, ED(G) ≤ TD(G). But for compact
abelian groups they coincide:

Fact 1.54. [65, Proposition 3 or Theorem 4] If K is a compact abelian group, then
ED(K) = TD(K).

For a topological Zp-module, the Zp-rank and ED(−) and TD(−) are strictly related
and if the Zp-rank is sufficiently large, they all coincide with the cardinality, as shown
by Fact 1.56. When the Zp-rank is finite the situation is more complicated. We give an
idea of this in the next example.

Example 1.55. [31, Proposition 3.5.11 and Corollary 3.5.12] Let σ be a cardinal and
p ∈ P. Then:



18 CHAPTER 1. GENERAL RESULTS, NOTATION AND TERMINOLOGY

(a)

rankZp(Zσp ) =


1 if σ = 1
σ if 1 < σ < ω

2σ if σ ≥ ω

(b)

TD(Zσp ) = ED(Zσp ) =


ω if σ = 1
c if 1 < σ < ω

2σ if σ ≥ ω

So rankZp(Zσp ) = ED(Zσp ) = TD(Zσp ) if and only if σ is infinite. Moreover this shows
that

• ED(Zσp ) = |Zσp | if and only if σ > 1, and that

• rankZp(Zσp ) = ED(Zσp ) = |Zσp | if and only if σ ≥ ω.

The precise result about Zp-modules is the following.

Fact 1.56. [4, Lemma 3.7] Let p ∈ P and let M be a topological Zp-module.

(a) If either rankZp(M) ≥ 2 or rp(M) ≥ c, then ED(M) = TD(M) = |M |.

(b) If rankZp(M) ≤ 1 and rp(M) < c, then TD(M) ≤ ω · rp(M).

Following [4] we introduce the class of Prodanov

P = {G topological abelian group : TD(G) ≤ ω}.

The compact abelian groups K ∈ P have special behavior and structure and they are
described in [60]; in particular they are metrizable by the following result.

Fact 1.57. [4, Lemma 2.4] If K is a compact abelian group, then ED(K) ≥ w(K).

As a direct consequence of Fact 1.56 we have the following characterization of Zp-
modules belonging to P and a description of their cardinality. If K is a compact abelian
group, then Kp is a topological Zp-module such that Kp[p] is compact, that is Kp has
the property requested in the next result.

Corollary 1.58. Let p ∈ P and let M be a topological Zp-module such that M [p] is
compact. Then:

(a) M ∈ P if and only if rankZp(M) ≤ 1 and rp(M) is finite;

(b) if M ∈ P, then |M | ≤ c;

(c) if M 6∈ P then |M | = c · rankZp(M) · rp(M).
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Proof. (a) Since M [p] is compact, it is either finite or |M [p]| ≥ c by Theorem 1.37. Then
apply Fact 1.56.

(b) Consider the short exact sequence {0} → t(M)→M →M/t(M)→ {0}. By (a)
rankZp(M) ≤ 1 and rp(M) is finite; so |M/tp(M)| ≤ c and |tp(M)| ≤ ω. Consequently
|M | = |M/tp(M)| · |tp(M)| ≤ c.

(c) Since M 6∈ P, by (a) either rankZp(M) ≥ 2 or rp(M) is infinite. If rankZp(M) ≥ 2,
then apply Lemma 1.15. If rankZp(M) ≤ 1, necessarily rp(M) is infinite. Since M [p]
is compact, |M [p]| ≥ c by Theorem 1.37 and so rp(M) ≥ c. If rankZp(M) = 1, then
|M | = c · rankZp(M) ·rp(M) by Lemma 1.15. If rankZp(M) = 0, then |M | = rp(M) again
by Lemma 1.15 and so |M | = c · rankZp(M) · rp(M) also in this case.

In case the Zp-modules of this corollary are compact, this is a particular case of the
general characterization of compact abelian groups belonging to P given in [60]:

Remark 1.59. Let K be a compact abelian group. Then

K ∈ P if and only if rp(K) < ω and ρp(K) ≤ 1 for every p ∈ P [60],

i.e., if and only if Kp ∈ P for every p ∈ P. Since each Kp is a topological Zp-module,
Corollary 1.58(a) describes when Kp ∈ P.

Let
πP(K) = {p ∈ P : Kp 6∈ P}.

Then K ∈ P if and only if πP(K) is empty.
Thanks to this characterization we see that

if K is a compact abelian group and K 6∈ P, then ED(K) = TD(K) ≥ c.

Indeed, if rp(K) is infinite, then rp(K) ≥ c and so ED(K) ≥ rp(K) ≥ c in view of
Lemma 1.47(a); and if ρp(K) ≥ 2, then K contains a subgroup isomorphic to Z2

p and
ED(Z2

p) = c by Example 1.55. So ED(K) ≥ c.

From now on we consider groups that do not belong to the already described class
P.

As a consequence of results in [4], Theorem 1.61 gives a precise value of ED(−) and
TD(−) for compact abelian groups not belonging to P. A fundamental step for the
proof of this theorem is the connected case:

Fact 1.60. [4, Theorem 3.11] If K is a connected compact abelian group such that
K 6∈ P, then ED(K) = TD(K) = |K|.

This fact was proved for non-metrizable compact abelian groups in [20] and gen-
eralized for non-metrizable compact (non-necessarily abelian) groups in [15, Theorem
5.6].

Theorem 1.61. Let K be a non-metrizable compact abelian group. Then

TD(K) =

{
|K| if w(K) = w(c(K)) or ∃ p ∈ P such that w(K) = w((K/c(K))p)
2<w(K) if w(K) > w(c(K)) and w(K) is a limit cardinal.
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Proof. Suppose that w(K) = w(c(K)). By Fact 1.60

TD(c(K)) = |c(K)| = 2w(c(K)) = 2w(K) = |K|.

Since TD(K) ≥ TD(c(K)), it follows that TD(K) = |K|. If w(K) = w((K/c(K))p) for
some p ∈ P, then (K/c(K))p is non-metrizable and so by Fact 1.56

TD((K/c(K))p) = |(K/c(K))p| = 2w((K/c(K))p) = 2w(K) = |K|.

Since TD(K) ≥ TD((K/c(K))p), so TD(K) = |K|.
Suppose that w(K) > w(c(K)) and that w(K) is a limit cardinal. Consequently

w(K/c(K)) = w(K) is a limit as well. In view of [4, Theorem 3.12] TD(K/c(K)) =
2<w(K/c(K)) = 2<w(K). Since [4, Theorem 3.14] says that

TD(K) = |c(K)| · TD(K/c(K)),

we have
TD(K) = 2w(c(K)) · 2<w(K).

Since w(c(K)) < w(K), 2w(c(K)) · 2<w(K) = 2<w(K) and so TD(K) = 2<w(K).

This theorem does not hold for K metrizable. For example for Z2
p we have seen in

Example 1.55 that TD(Z2
p) = c, while the theorem would imply that it was ω. This

argument holds also for [4, Theorem 3.12], which is true with the hypothesis that K is
non-metrizable.



Chapter 2

κ-Pseudocompactness

Since ω-pseudocompactness coincides with pseudocompactness [54, Theorem 2.1], κ-
pseudocompactness is the natural generalization of pseudocompactness for all infinite
cardinals κ. If κ ≥ λ are infinite cardinals, κ-pseudocompactness implies λ-pseudocom-
pactness and in particular pseudocompactness.

As Gδ-sets and Gδ-density are fundamental to work with pseudocompact spaces,
Gκ-sets and Gκ-density were introduced for κ-pseudocompactness:

Definition 2.1. [44] Let κ be an infinite cardinal and let X be a Tychonov topological
space.

• A Gκ-set S of X is the intersection of κ many open subsets of X.

• A subset D of X is Gκ-dense in X if D has non-empty intersection with every
Gκ-set of X.

The Gκ-sets for κ = ω are the Gδ-sets. A Tychonov topological space X has ψ(X) ≤
κ precisely when {x} is a Gκ-set of X for every x ∈ X. So if D is a Gκ-dense subset of
X and ψ(X) ≤ κ, then D = X.

Here we introduce the Pκ-modification of a given topology (generalizing the P -
modification):

Definition 2.2. Let κ be an infinite cardinal and let (X, τ) be a Tychonov topological
space. Then Pκτ denotes the topology on X generated by the Gκ-sets of X, which is
called Pκ-topology.

Obviously τ ≤ Pκτ . If X is a topological space, we denote by PκX the set X endowed
with the Pκ-topology. Note that Y ⊆ X is Gκ-dense in X if and only if Y is dense in
PκX.

In this chapter we give properties of κ-pseudocompact groups and characterize them
in terms of their completion. Then we introduce the family Λκ(G, τ) of “big” closed
normal subgroups of a κ-pseudocompact group (G, τ), which turns out to be a local
base at eG of the Pκ-modification of τ . Moreover we study the Pκ-modification of the
Bohr topology of topological abelian groups.

21
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2.1 Characterization

Remark 2.3. Let κ be an infinite cardinal. An equivalent definition of κ-pseudocom-
pactness is the following:

a Tychonov topological space is κ-pseudocompact if for every continuous
function f : X → Y , where Y is a Tychonov topological space of weight ≤ κ,
f(X) is compact.

Indeed every Y can be seen as a subspace of [0, 1]κ ⊆ Rκ by Tychonov theorem [40].

It immediately follows from this equivalent definition that a κ-pseudocompact space
of weight ≤ κ is compact. We use often this fact.

In the next remark we show how κ-pseudocompactness can be introduced using a
cardinal invariant.

Remark 2.4. Let X be a Tychonov topological space and let

psc(X) =

{
∞ if X is compact
min{κ : ∃ continuous f : X → Rκ : f(X) non-compact} otherwise

be the level of pseudocompactness.
Let κ be an infinite cardinal. Then X is κ-pseudocompact if psc(X) > κ.

We give properties of Gκ-sets and Gκ-dense subsets:

Lemma 2.5. Let κ be an infinite cardinal and let X be a Tychonov topological space.
Let Z ⊆ Y ⊆ X.

(a) If Z is a Gκ-set of Y and Y is a Gκ-set of X, then Z is a Gκ-set of X.

(b) If Z is Gκ-dense in Y and Y is Gκ-dense in X, then Z is Gκ-dense in X.

Proof. (a) By hypothesis Y =
⋂
λ<κ Uλ and Z =

⋂
λ<κ Vλ, where Uλ is open in X and

Vλ is open in Y for every λ < κ. For every λ < κ there exists an open subset Wλ of X
such that Vλ = Wλ ∩Y . Consequently Z =

⋂
λ<κ Vλ =

⋂
λ<κWλ ∩Y =

⋂
λ<κ(Wλ ∩Uλ).

This proves that Z is a Gκ-set of X.
(b) Let W be a non-empty Gκ-set of X. Then W ∩ Y is a non-empty Gκ-set of Y ,

because Y is Gκ-dense in X. Since Z is Gκ-dense in Y , W ∩Y ∩Z = W ∩Z is non-empty.
This proves that Z is Gκ-dense in X.

Fact 2.6. Let κ be an infinite cardinal. Let X,Y be Tychonov topological spaces, f :
X → Y a continuous surjective function and D a subset of X.

(a) If D is dense in X, then f(D) is dense in Y .

(b) If D is Gκ-dense in X, then f(D) is Gκ-dense in Y .

(c) If D is κ-pseudocompact, then f(D) is κ-pseudocompact.
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Proof. (a) Let U be an open subset of Y . Then f−1(U) is an open subset of X. By
the hypothesis D ∩ f−1(U) is not empty. So there exists x ∈ D ∩ f−1(U). Then
f(x) ∈ f(D) ∩ U , which is not empty. This proves that f(D) is dense in Y .

(b) Let W =
⋃
λ<κ Uλ be a Gκ-set of Y . Then f−1(W ) =

⋃
λ<κ f

−1(Uλ) is a Gκ-set
of X. By the hypothesis D ∩ f−1(W ) is not empty. So there exists x ∈ D ∩ f−1(W ).
Then f(x) ∈ f(D) ∩W , which is not empty. This proves that f(D) is Gκ-dense in Y .

(c) follows from the definition of κ-pseudocompact space.

To work with κ-pseudocompact groups we need a characterization of them similar to
that of pseudocompact groups given by Comfort and Ross theorem:

Theorem 2.7. [18, Theorem 4.1] Let G be a precompact group. Then the following
conditions are equivalent:

(a) G is pseudocompact;

(b) G is Gδ-dense in G̃;

(c) G is dense in PG̃;

(d) every continuous function f : G→ R can be extended to G̃;

(e) every continuous function f : G→ R is uniformly continuous;

(f) G̃ = βG.

We find the wanted characterization in Theorem 2.12 combining Theorem 2.7 with
Corollary 2.11.

Definition 2.8. [44, Definition 1.1] Let κ be an infinite cardinal. A subset B of a Ty-
chonov topological space X is Cκ-compact in X if f(B) is compact for every continuous
function f : X → Rκ.

Consequently a Tychonov topological space X is κ-pseudocompact if and only if X
is Cκ-compact in X. Moreover we have the next property.

Claim 2.9. Let κ be an infinite cardinal and let X be a Tychonov topological space. If
Z ⊆ Y ⊆ X and Z is Cκ-compact in Y , then Z is Cκ-compact in X.

In particular, if Z is a κ-pseudocompact Tychonov topological space, then Z is Cκ-
compact in X, for every Tychonov topological space X such that Z is a subspace of
X.

The following is the main theorem about Cκ-compactness.

Theorem 2.10. [44, Theorem 1.2] Let κ be an infinite cardinal, let X be a Tychonov
topological space and B a subset of X. Then the following conditions are equivalent:

(a) B is Cκ-compact;
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(b) f(B) is compact for every continuous function f : X → Y , where Y is a Tychonov
topological space of weight ≤ κ;

(c) B is Gκ-dense in B
βX .

As a consequence of Theorem 2.10 and using Claim 2.9, we have the next result,
which generalizes for every infinite cardinal κ a result of Hewitt [49].

Corollary 2.11. Let κ be an infinite cardinal. A Tychonov topological space X is κ-
pseudocompact if and only if it is Gκ-dense in βX.

The next theorem characterizes a κ-pseudocompact group in terms of its completion.

Theorem 2.12. Let κ be an infinite cardinal and let G be a precompact group. Then
the following conditions are equivalent:

(a) G is κ-pseudocompact;

(b) G is Gκ-dense in G̃ = βG;

(c) G is dense in PκG̃.

Proof. Both conditions (a) and (b) imply that G is pseudocompact. So in particular
G̃ = βG by Theorem 2.7. Then (a)⇔(b) is given precisely by Corollary 2.11.

(b)⇔(c) is obvious.

As a consequence of this theorem, we can give a fundamental example of non-compact
κ-pseudocompact groups.

Example 2.13. Let κ be an infinite cardinal and let G =
∏
i∈I Gi be a product of

topological groups, such that |{i ∈ I : Gi 6= {eG}}| > κ. The Σκ-product ΣκG is Gκ-
dense in G. Moreover it is proper, because ΣκG ∩ ∆G = {eG}. If G is compact, then
ΣκG is non-compact and κ-pseudocompact in view of Theorem 2.12.

The next are other consequences of Theorem 2.12.

Corollary 2.14. Let κ be an infinite cardinal. Let G be a topological group and D a
dense subgroup of G. Then D is κ-pseudocompact if and only if D is Gκ-dense in G and
G is κ-pseudocompact.

Proof. Suppose that D is κ-pseudocompact. It follows that D̃ is compact and D is
Gκ-dense in D̃ by Theorem 2.12. Since D is dense in G, so D̃ = G̃ and hence D is
Gκ-dense in G. Moreover G ⊇ D and so G is Gκ-dense in G̃. By Theorem 2.12 G is
κ-pseudocompact.

Assume that G is κ-pseudocompact and that D is Gκ-dense in G. Since G is Gκ-
dense in G̃ by Theorem 2.12 and since D is Gκ-dense in G, it follows from Lemma 2.5(b)
that D is Gκ-dense in G̃ = D̃. Hence D is κ-pseudocompact by Theorem 2.12.
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Lemma 2.15. Let κ be an infinite cardinal. Let G be a topological group and H a
κ-pseudocompact subgroup of G such that H has finite index in G. Then G is κ-
pseudocompact.

Proof. It suffices to note that each (of the finitely many) cosets xH is κ-pseudocom-
pact.

The following lemma is the generalization to κ-pseudocompact groups of [16, Theo-
rem 3.2].

Lemma 2.16. Let κ be an infinite cardinal. If G is a κ-pseudocompact group and
ψ(G) ≤ κ, then G is compact and so w(G) = ψ(G) ≤ κ.

Proof. Since ψ(G) ≤ κ, it follows that {eG} =
⋂
λ<κ Uλ for neighborhoods Uλ of eG in G

and by the regularity of G it is possible to choose every Uλ closed in G. Let K = G̃. Then⋂
λ<κ Uλ

K contains a non-empty Gκ-set W of K. Moreover G ∩W ⊆ G ∩
⋂
λ<κ Uλ

K =
{eG} and W \ {eG} is a Gκ-set of K. Since G is Gκ-dense in K by Theorem 2.12, this
is possible only if W = {eG}. Then ψ(K) ≤ κ and this is equivalent to say that PκK is
discrete. Since G is dense in PκK = (K, δK) in view of Theorem 2.12, we can conclude
that G = K. Then G is compact and w(G) = ψ(G) ≤ κ.

2.2 The family Λκ(G)

Let G be a topological group and κ an infinite cardinal. We define

Λκ(G) = {N / G : N closed Gκ-subgroup}.

The family Λω(G) is denoted by Λ(G) (see [16, 29]). For κ ≥ λ infinite cardinals
Λκ(G) ⊇ Λλ(G).

In Theorem 2.20 we prove that for κ-pseudocompact groups the families in the fol-
lowing claim coincide.

Claim 2.17. Let κ be an infinite cardinal and let G be a topological group. Then

Λκ(G) ⊇ {N / G : closed, ψ(G/N) ≤ κ} ⊇ {N / G : closed, w(G/N) ≤ κ}.

Proof. Let N be a closed normal subgroup of G and suppose that w(G/N) ≤ κ. It
follows that ψ(G/N) ≤ κ. So N is a Gκ-set of G and hence N ∈ Λκ(G).

The following lemma shows in particular that Λκ(G) is a local base at eG of PκG, for
a precompact group G. For κ = ω, it is [16, Lemma 1.6], which is applied in the proof.

Lemma 2.18. Let κ be an infinite cardinal. Let G be a precompact group and W a Gκ-
set of G such that eG ∈W . Then W contains some N ∈ Λκ(G) such that ψ(G/N) ≤ κ.
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Proof. Let W =
⋂
λ<κ Uλ, where Uλ is an open neighborhood of eG in G for every

λ < κ. Let λ < κ. Since Uλ is open and eG ∈ Uλ, in particular Uλ is a Gδ-set of G
containing eG. Then there exists Nλ ∈ Λ(G) such that Nλ ⊆ Uλ and ψ(G/Nλ) ≤ ω
[16, Lemma 1.6]. Let N =

⋂
λ<κNλ. Then N ∈ Λκ(G). Moreover ψ(G/N) ≤ κ

because there exists a continuous injective homomorphism G/N →
∏
λ<κG/Nλ and so

ψ(G/N) ≤ ψ(
∏
λ<κG/Nλ) ≤ κ.

A consequence of the next corollary is that {xN : x ∈ G,N ∈ Λκ(G)} is a base of
PκG, in case G is a precompact group.

Corollary 2.19. Let κ be an infinite cardinal. If G is precompact and W is a Gκ-set
of G, then there exist a ∈ W and N ∈ Λκ(G) such that aN ⊆ W . So a subset H of G
is Gκ-dense in G if and only if (xN) ∩H 6= ∅ for every x ∈ G and N ∈ Λκ(G).

The next theorem and the first statement of its corollary were proved in the case
κ = ω in [16, Theorem 6.1 and Corollary 6.2].

Theorem 2.20. Let κ be an infinite cardinal and let G be a precompact group. Then G
is κ-pseudocompact if and only if w(G/N) ≤ κ for every N ∈ Λκ(G).

Proof. Suppose that G is κ-pseudocompact and let N ∈ Λκ(G). By Lemma 2.18 there
exists L ∈ Λκ(G) such that L ≤ N and ψ(G/L) ≤ κ. Thanks to Lemma 2.16 we have
that G/L is compact of weight w(G/L) = ψ(G/L) ≤ κ. Since G/N is continuous image
of G/L, it follows that w(G/N) ≤ κ.

Suppose that w(G/N) ≤ κ for every N ∈ Λκ(G). By Theorem 2.12 and Corollary
2.19 it suffices to prove that xM ∩ G 6= ∅ for every x ∈ G̃ and every M ∈ Λκ(G̃). So
let x ∈ G̃ and M ∈ Λκ(G̃). Let π̃ : G̃ → G̃/M be the canonical projection, π = π̃ �G
and N = G ∩M . Hence N ∈ Λκ(G). By the hypothesis w(G/N) ≤ κ and so G/N is
compact. Since π(G) is continuous image of G/ kerπ = G/N , so π(G) is compact as
well. Since G is dense in G̃, by Fact 2.6(a) π(G) is dense in G̃/M and so π(G) = G̃/M .
Therefore xM ∈ π(G) = {gM : g ∈ G} and hence xM = gM for some g ∈ G, that is
g ∈ xM ∩G, which consequently is non-empty.

Corollary 2.21. Let κ be an infinite cardinal. Let G be a κ-pseudocompact abelian
group and let N ∈ Λκ(G). Then:

(a) if L ∈ Λκ(N), then L ∈ Λκ(G);

(b) N is κ-pseudocompact;

(c) if L is a closed subgroup of G such that N ⊆ L, then L ∈ Λκ(G);

(d) if w(G) > κ, then w(G) = w(N) for every N ∈ Λκ(G).

Proof. (a) Since N is closed in G and L is closed in N , it follows that L is closed in G.
Moreover L is a Gκ-set of G, because N is a Gκ-set of G and L is a Gκ-set of N and so
Lemma 2.5(a) applies.



2.2. THE FAMILY Λκ(G) 27

(b) Let L ∈ Λκ(N). By (a) L is a Gκ-set of G and so there exists M ∈ Λκ(G)
such that M ⊆ L by Lemma 2.18. By Theorem 2.20 w(G/M) ≤ κ and consequently
w(N/M) ≤ w(G/M) ≤ κ. Since N/L is continuous image of N/M , it follows that
w(N/L) ≤ w(N/M) ≤ κ. Hence N is κ-pseudocompact by Theorem 2.20.

(c) Since w(G/N) ≤ κ by Theorem 2.20 and G/L is continuous image of G/N , it
follows that w(G/L) ≤ κ. Hence L ∈ Λκ(G) by Claim 2.17.

(d) Let N ∈ Λκ(G). Since w(G) = w(N) · w(G/N) and w(G/N) ≤ κ by Theorem
2.20, then w(G) = w(N).

This corollary and the following lemmas were proved in the pseudocompact case in
[29, Section 2].

Lemma 2.22. Let κ be an infinite cardinal, G a κ-pseudocompact abelian group and D
a subgroup of G. Then:

(a) D is Gκ-dense in G if and only if D +N = G for every N ∈ Λκ(G);

(b) if D is Gκ-dense in G and N ∈ Λκ(G), then D ∩N is Gκ-dense in N and G/D ∼=
N/(D ∩N).

Proof. (a) follows from Corollary 2.19 and (b) follows from (a) and Corollary 2.21.

Lemma 2.23. Let κ be an infinite cardinal, G a κ-pseudocompact abelian group, L a
closed subgroup of G and π : G→ G/L the canonical projection.

(a) If N ∈ Λκ(G) then π(N) ∈ Λκ(G/L).

(b) If D is a Gκ-dense subgroup of G/L then π−1(D) is a Gκ-dense subgroup of G.

(c) If H is a κ-pseudocompact subgroup of G/L, then π−1(H) is a κ-pseudocompact
subgroup of G.

Proof. (a) By Theorem 2.20 we have w(G/N) ≤ κ. Since

(G/L)/π(N) = (G/L)/((N + L)/L)

and (G/L)/((N + L)/L) is topologically isomorphic to G/(N + L), it follows that
w((G/L)/π(N)) ≤ w(G/(N + L)) ≤ w(G/N) ≤ κ. Hence π(N) ∈ Λκ(G/L) by Claim
2.17.

(b) Let N ∈ Λκ(G). Since π(N +π−1(D)) = π(N) +D and by (a) π(N) ∈ Λκ(G/L),
Lemma 2.22(a) implies that π(N) + D = G/L. Then π(N + π−1(D)) = G/L and so
N + π−1(D) = G. By Lemma 2.22(a) π−1(D) is Gκ-dense in G.

(c) The restriction π �π−1(H): π
−1(H)→ H is open. By Theorem 2.12 H is Gκ-dense

in H. Then π−1(H) is Gκ-dense in π−1(H) by (b). So π−1(H) is κ-pseudocompact by
Theorem 2.12.

The next remark explains the role of the graph of a homomorphism in relation to
the topology of the domain (see [29, Remark 2.12] for more details).
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Remark 2.24. Let (G, τ) and H be topological groups and h : (G, τ)→ H a homomor-
phism. Consider the map j : G→ Γh such that j(x) = (x, h(x)) for every x ∈ G. Then
j is an open isomorphism. Endow Γh with the group topology induced by the product
(G, τ)×H. The topology τh is the weakest group topology on G such that τh ≥ τ and for
which j is continuous. Then j : (G, τh) → Γh is a homeomorphism. Moreover τh is the
weakest group topology on G such that τh ≥ τ and for which h is continuous. Clearly h
is τ -continuous if and only if τh = τ .

Thanks to this remark we can give an example which shows that the condition “open”
in Lemmas 1.22(b), 1.49 and 2.23 cannot be removed.

Example 2.25. Let K = Tc, and let τ be the usual product topology on K. If H =
H1 + H2, where H1 = ΣK and H2 = (Q/Z)c, then H is Gδ-dense and totally dense in
(K, τ).

We prove that
r0(K/H) ≥ c.

To see this note that r0(∆K) = c because ∆K ∼= T. Let π : K → K/H be the
canonical projection. Then π(∆K) ∼= ∆K/(∆K ∩ H). By Lemma 1.7 r0(∆K) =
r0(∆K/(∆K∩H))+r0(∆K∩H). Since r0(∆K∩H) = 0, because ∆K∩H = ∆(Q/Z)c,
it follows that r0(π(∆K)) = c. Therefore r0(π(∆K)) = c and so r0(K/H) ≥ c.

Since r0(K/H) ≥ c, there exists a surjective homomorphism ϕ : K/H → T by Fact
1.16. Let h = ϕ ◦ π : K → T, and let τh be the weakest topology on K such that τh ≥ τ
and h is continuous, as defined in Remark 2.24. Let G = kerh. Since H ⊆ G, it follows
that G is Gδ-dense in (K, τ). By Lemma 6.11(b) with κ = ω, Γh is Gδ-dense in (K, τ)×T
and so it is pseudocompact with the topology inherited from (K, τ)×T by Corollary 2.14
with κ = ω. By Remark 2.24 (K, τh) is homeomorphic to Γh endowed with the topology
inherited from (K, τ) × T and so τh is pseudocompact. Moreover τh > τ ; indeed Γh is
not closed in (K, τ)× T and so h : (K, τ)→ T is not continuous by Theorem 1.20.

Consider now the non-open continuous isomorphism

idK : (K, τh)→ (K, τ).

We have that G is a Gδ-dense and totally dense subgroup of (K, τ). But G is proper
and closed in (K, τh) and so G cannot be dense in (K, τh).

2.3 The Pκ-topology

The following lemma is the generalization to the Pκ-topology of [16, Theorem 5.16].

Lemma 2.26. Let κ be an infinite cardinal and let (G, τ) be a precompact abelian group
such that every h ∈ Hom(G,T) is Pκτ -continuous. Then (G,Pκτ) = PκG

#.

Proof. Let τ#
G be the Bohr topology on G, that is G# = (G, τ#

G ). By hypothesis τ#
G ≤

Pκτ . Then Pκτ
#
G ≤ PκPκτ = Pκτ . Moreover τ ≤ τ#

G yields Pκτ ≤ Pκτ#
G .
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A Tychonov topological space X is of first category if it can be written as the union
of countably many nowhere dense subsets of X. (A subset Y of X is nowhere dense in
Y if the interior of the closure of Y is empty.) Moreover X is of second category (Baire)
if it is not of first category, that is if for every family {Un}n∈N of open dense subsets of
X, also

⋂
n∈N Un is dense in X.

The following theorem is a new interesting result about the Bohr topology. In the
first part of it we give a more detailed description of the topology PκG

#, while the
equivalence of (a), (b) and (c) is the counterpart of [16, Theorem 5.17] for the Pκ-
topology. Some ideas in the proof of this second part are similar to those in the proof
of [16, Theorem 5.17], but our proof is shorter and simpler, thanks to the description in
algebraic terms of the topology PκG# given in the first part of the proof.

Theorem 2.27. Let κ be an infinite cardinal and let G be an abelian group. Then
Λ′κ(G#) = {N ≤ G : |G/N | ≤ 2κ} ⊆ Λκ(G#) is a local base at 0 of PκG#. Consequently
the following conditions are equivalent:

(a) |G| ≤ 2κ;

(b) PκG
# is discrete;

(c) PκG
# is Baire.

Proof. We prove first that

Λ′′κ(G#) =

{⋂
λ<κ

kerχλ : χλ ∈ Hom(G,T)

}
⊆ Λκ(G#)

is a local base at 0 of PκG# and then the equality

Λ′κ(G#) = Λ′′κ(G#).

If W is a Gκ-set of G such that 0 ∈ W , then W =
⋂
λ<κ Uλ, where each Uλ is a

neighborhood of 0 in G# belonging to the base. This means that Uλ = χ−1
λ (Vλ), where

χλ ∈ Hom(G,T) and Vλ is a neighborhood of 0 in T. Therefore

W =
⋂
λ<κ

χ−1
λ (0) =

⋂
λ<κ

kerχλ.

Each χ−1
λ (0) is a Gδ-set of G#, because {0} is a Gδ-set of T, and hence

⋂
λ<κ χ

−1
λ (0) is

a Gκ-set of G#. Until now we have proved that Λ′′κ(G#) is a local base at 0 of PκG#.
Moreover it is contained in Λκ(G#), because each

⋂
λ<κ kerχλ, where χλ ∈ Hom(G,T),

is a closed Gκ-subgroup of G#.
It remains to prove that Λ′κ(G#) = Λ′′κ(G#). Let N =

⋂
λ<κ kerχλ ∈ Λ′′κ(G#), where

every χλ ∈ Hom(G,T). Since for every λ < κ there exists an injective homomorphism
G/ kerχλ → T, it follows that there exists an injective homomorphism G/N → Tκ.
Then |G/N | ≤ 2κ and so N ∈ Λ′κ(G#).
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To prove the converse inclusion let N ∈ Λ′κ(G#). Then N is closed in G#, because
every subgroup of G is closed in G#. Moreover, since r(G/N) ≤ 2κ, there exists an
injective homomorphism i : G/N → Tκ; in fact, G/N has a subgroup B(G/N) which
non-trivially intersects each non-trivial subgroup of G/N (i.e., B(G/N) is essential in
G/N in algebraic sense) and

B(G/N) ∼= Z(r0(G/N)) ⊕
⊕
p∈P

Z(p)(rp(G/N)).

Since r0(Tκ) = 2κ and rp(Tκ) = 2κ for every p ∈ P, there exists an injective homomor-
phism B(G/N)→ Tκ and by the divisibility of Tκ this homomorphism can be extended
to G/N (the extended homomorphism is still injective by the algebraic essentiality of
B(G/N) in G/N). Let π : G → G/N and πλ : Tκ → T be the canonical projections
for every λ < κ. Then χλ = πλ �i(G) ◦i ◦ π : G → T is a homomorphism. Moreover
N =

⋂
λ<κ kerχλ ∈ Λ′′κ(G#).

It is clear that (a)⇒(b) by the first part of the proof and that (b)⇒(c).

(c)⇒(a) Suppose for a contradiction that |G| > 2κ. We prove that PκG# is of first
category. Let

D(G) = Q(r0(G)) ⊕
⊕
p∈P

Z(p∞)(rp(G))

be the divisible hull of G. Moreover G has a subgroup algebraically isomorphic to

B(G) = Z(r0(G)) ⊕
⊕
p∈P

Z(p)(rp(G)).

We can think

B(G) ≤ G ≤ D(G) ≤ TI , where |I| = r(G) = r0(G) +
∑
p∈P

rp(G),

because Q and Z(p∞) are algebraically isomorphic to subgroups of T for every p ∈ P.
Since |G| > 2κ, it follows that |I| > 2κ.

For x ∈ G let s(x) = {i ∈ I : xi 6= 0} and for n ∈ N set

A(n) = {x ∈ G : |s(x)| ≤ n}.

Then G =
⋃
n∈NA(n).

For every n ∈ N we have A(n) ⊆ A(n + 1). We prove that A(n) is closed in the
topology τ induced on G by TI for every n ∈ N: it is obvious that A(0) is compact and
A(1) is compact, because every open neighborhood of 0 in (G, τ) contains all but a finite
number of elements of A(1). Moreover, for every n ∈ N with n > 1, A(n) is the sum of
n copies of A(1) and so it is compact.

To conclude the proof we have to show that for every n ∈ N

A(n) has empty interior in PκG
#.
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Since A(n) ⊆ A(n+1) for every n ∈ N, it suffices to prove that the interior IntPκG#(A(n))
is empty for sufficiently large n ∈ N. We consider n ∈ N+. By the first part of the proof,
it suffices to show that if x ∈ G and N is a subgroup of G such that |G/N | ≤ 2κ, then
x ∈ x+N 6⊆ A(n) for all n ∈ N+. Moreover we can suppose that x = 0. In fact, if there
exist x ∈ G and N ≤ G with |G/N | ≤ 2κ, such that x+N ⊆ A(n), then x = x+0 ∈ A(n)
and 0 ∈ N ⊆ −x+A(n) ⊆ A(n)+A(n) ⊆ A(2n). So let N ≤ G be such that |G/N | ≤ 2κ.
Let

{Iξ : ξ < (2κ)+}

be a family of subsets of I such that |Iξ| = n and Iξ ∩ Iξ′ = ∅ for every ξ < ξ′ < (2κ)+.
For every ξ < (2κ)+ there exists xξ ∈ B(G) ≤ G such that s(xξ) = Iξ. Let π : G→ G/N
be the canonical projection. Since∣∣{xξ : ξ < (2κ)+}

∣∣ = (2κ)+ > 2κ ≥ |G/N |,

it follows that there exist ξ < ξ′ < (2κ)+ such that π(xξ) = π(xξ′). Then xξ − xξ′ ∈
kerπ = N . But s(xξ − xξ′) = Iξ ∪ Iξ′ and |Iξ ∪ Iξ′ | = 2n. Hence xξ − xξ′ 6∈ A(n).

The following theorem is the generalization to the Pκ-topology of [15, Lemma 2.4]
for topological groups.

Theorem 2.28. Let κ be an infinite cardinal and let G be a κ-pseudocompact group.
Then PκG is Baire.

Proof. Let K be the completion of G, which is compact, and

B = {xN : x ∈ K,N ∈ Λκ(K)}.

By Corollary 2.19 B is a base of PκK. Consider a family {Un}n∈N of open dense subsets
of PκK. We can choose them so that Un ⊇ Un+1 for every n ∈ N. Let A ∈ Pκτ , A 6= ∅.
Then A ∩ U0 is a non-empty element of Pκτ . Therefore there exists B0 ∈ B such that
B0 ⊆ A∩U0. We proceed by induction. If Bn ∈ B has been defined, then Bn∩Un+1 is a
non-empty open set in PκK and so there exists Bn+1 ∈ B such that Bn+1 ⊆ Bn ∩ Vn+1.
Then

A ∩
⋂
n∈N

Un =
⋂
n∈N

(A ∩ Un) ⊇
⋂
n∈N

Bn.

Moreover
⋂
n∈NBn 6= ∅, because {Bn}n∈N is a decreasing sequence of closed subsets of

K, which is compact.
Being κ-pseudocompact, G is Gκ-dense in K by Theorem 2.12. Then G is Gκ-dense

in PκK, which is Baire by the previous part of the proof. By [15, Lemma 2.4(b)] a
Gδ-dense subspace of a Baire space is Baire, and so PκG is Baire.
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Chapter 3

The divisible weight

In this chapter we first describe the positive aspects of singular abelian groups and
their properties. We also find a singular abelian group, which is a counterexample of
a recent conjecture. Then we introduce new cardinal invariants, namely the divisible
weight and the super-divisible weight, which measure singularity of topological abelian
groups with great precision. These cardinal invariants are strictly related to the weight
of topological abelian groups. Using them we see singularity from another point of view
and we introduce new notions, i.e., w-divisibility, κ-singularity and super-κ-singularity
for κ an infinite cardinal. Moreover we describe these w-divisible, κ-singular and super-
κ-singular abelian groups, which turn out to be useful for the problems studied in the
following chapters.

3.1 The power of singularity

Singular groups were defined in [29, Definition 1.2] in the ambit of extremal groups. For
example at the end of [29] we proved that for pseudocompact abelian groups singularity
is equivalent to one important level of extremality, that is c-extremality. A topological
group is c-extremal if r0(G/D) < c for every dense pseudocompact subgroup D of G; this
definition was given in [29, Definition 1.1] for pseudocompact groups. One implication
is quite easy to prove also in the general case of topological abelian groups which are
non-necessarily pseudocompact:

Fact 3.1. Every singular abelian group is c-extremal.

Proof. Suppose that G is a singular abelian group. Then there exists m ∈ N+ such that
w(mG) ≤ ω. Let D be a dense pseudocompact subgroup of G. By Corollary 2.14(a)
with κ = ω the subgroup D is Gδ-dense in G; then mD is Gδ-dense in mG by Fact
2.6(b) with κ = ω. Since mG is metrizable, mD = mG. Consequently m(G/D) = {0}
and, since r0(G/D) = r0(m(G/D)) = 0, it follows that G is c-extremal.

This fact generalizes [29, Proposition 4.7] for every topological abelian group non-
necessarily pseudocompact. We give an example which shows that the converse impli-
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cation does not hold for topological abelian groups in general; in other words we give an
example of a non-singular c-extremal abelian group:

Example 3.2. Let G = Z#. Then G is c-extremal because |G| < c. We show that
G is non-singular. For every m ∈ N+, the subgroup mZ is dense in Z# and hence
w(mZ#) = w(Z#) for every m ∈ N+ and w(Z#) = c by Fact 1.38. This means that Z#

is non-singular.

The converse implication of Fact 3.1 holds for pseudocompact abelian groups, even
if the two properties involved have different nature. As observed at the end of [29], the
equivalence of singularity and c-extremality for pseudocompact groups implies Theorem
A of the introduction.

In the remaining part of this section we produce a singular group, which is a coun-
terexample for Conjecture 3.6 below, that was formulated in a preliminary version of
[23] (see http://atlas-conferences.com/cgi-bin/abstract/cats-72). This again shows that
singular groups are useful.

Definition 3.3. A pseudocompact abelian group G is CvM-pseudocompact if there exist
D0 and D1 dense pseudocompact subgroups of G with trivial intersection.

If G is a non-trivial CvM-pseudocompact abelian group, then G is not metrizable.
Moreover we have the following.

Example 3.4. Let G be a metrizable (thus compact) pseudocompact abelian group.
Then G is CvM-pseudocompact if and only if G = {0}.

The next lemma gives a necessary condition for a topological abelian group to be
CvM-pseudocompact.

Lemma 3.5. If G is a CvM-pseudocompact abelian group then mG is CvM-pseudocom-
pact for every m ∈ N+. In particular, in case mG 6= {0}, mG is non-metrizable.

Proof. There exist D0 and D1 dense pseudocompact subgroups of G with trivial inter-
section. Let m ∈ N+. Then mD0 and mD1 are dense pseudocompact subgroups of mG
by Fact 2.6(a,c) with κ = ω and they have trivial intersection.

Conjecture 3.6. Every non-metrizable pseudocompact non-torsion abelian group is
CvM-pseudocompact.

Lemma 3.7. Let G be a pseudocompact non-torsion abelian group. If G is CvM-pseu-
docompact, then G is non-singular.

Proof. Suppose for a contradiction that G is singular. There exists m ∈ N+ such that
mG is metrizable. Let D0 and D1 be dense pseudocompact subgroups of G with trivial
intersection. Then mD0 and mD1 are dense pseudocompact subgroups of mG by Fact
2.6(a,c) with κ = ω. So mD0 and mD1 are Gδ-dense in mG by Corollary 2.14 with
κ = ω. Since mG is metrizable, mD0 = mD1 = mG. Hence mG ⊆ D0 ∩D1 = {0} and
G is torsion, against the hypothesis.
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The previous lemma allows us to find a counterexample for Conjecture 3.6:

Example 3.8. Let G = T × Z(2)c endowed with the product topology. Then G is
non-torsion and singular. So G cannot be CvM-pseudocompact by Lemma 3.7.

The problem can be extended to all pseudocompact abelian groups:

Problem 3.9. (a) Which non-singular pseudocompact abelian groups are CvM-pseu-
docompact?

(b) Which torsion pseudocompact abelian groups are CvM-pseudocompact?

3.2 The divisible weight

Definition 3.10. Let G be a topological abelian group. The divisible weight of G is

wd(G) = inf
m∈N+

w(mG).

Lemma 3.11. Let p ∈ P. If K is a compact Zp-module, then wd(K) = infn∈Nw(pnK).

Proof. If m = pkm1, where m1 is coprime to p, then mK = pkK.

Since the next remark shows that the divisible weight coincides with the final rank
for discrete abelian p-groups (p ∈ P) of infinite final rank, the divisible weight can be
viewed as a natural generalization of the final rank to all “sufficiently large” abelian
(topological) groups.

Remark 3.12. If K is a compact Zp-module with wd(K) ≥ ω and X = K̂, then

finr(X) = wd(X) = wd(K).

In fact, since by Fact 1.33 p̂nK ∼= pnX for every n ∈ N, w(pnK) = |pnX| = w(pnX)
for every n ∈ N. Hence wd(K) = wd(X). Being wd(K) ≥ ω, |pnX| is infinite and so
|pnX| = rp(pnX) for each n ∈ N, that is finr(X) is infinite. It follows from Lemma 3.11
that finr(X) = wd(X).

The equality wd(K) = wd(X) of Remark 3.12 can be proved in general for a topo-
logical abelian group which is either compact or discrete:

Theorem 3.13. Let K be a topological abelian group which is either compact or discrete.
Then wd(K) = wd(K̂).

Proof. By Fact 1.33 m̂!K ∼= m!K̂, for every m ∈ N+. Then

w(m!K) = |m̂!K| = w(m̂!K) = w(m!K̂)

for every m ∈ N+. This shows that wd(K) = wd(K̂).
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Corollary 3.14. Let K be a topological abelian group which is either compact or discrete.
Then K is w-divisible if and only if K̂ is w-divisible (in other words |mK̂| = |K̂| > ω
for every m ∈ N+).

Proof. By Theorem 3.13 wd(K) = wd(K̂). Moreover w(K) = w(K̂). Then wd(K) =
w(K) > ω if and only if wd(K̂) = w(K̂) > ω. This means that K is w-divisible if and
only if K̂ is w-divisible.

Since Theorem 3.13 holds for topological abelian groups which are either compact or
discrete, we think that it remains true also in the more general case of locally compact
abelian groups. The following question is open.

Question 3.15. Does Theorem 3.13 hold true for locally compact abelian groups?

We study the behavior of the divisible weight. Obviously it is monotone under taking
subgroups.

Lemma 3.16. Let G be a topological abelian group and let H be subgroup of G. Then:

(a) wd(H) ≤ wd(G);

(b) if H is dense in G, then wd(H) = wd(G).

Proof. (a) is obvious.
(b) Observe that w(mH) = w(mG) for every m ∈ N+, because the homomorphism

G→ mG, defined by the multiplication by m, is continuous and so mH is dense in mG
for every m ∈ N+ by Fact 2.6(a). In particular wd(H) = wd(G).

Proposition 3.17. Let G and L be abelian groups such there exists a continuous sur-
jective homomorphism f : G→ L. If G is precompact, then wd(G) ≥ wd(L).

Proof. For every m ∈ N+ there exists a continuous surjective homomorphism mG→ mL
and so w(mG) ≥ w(mL) because mG and mL are precompact.

The next example shows that in the previous proposition the hypothesis of precom-
pactness cannot be removed (as in the known case of the weight).

Example 3.18. Let idZ : (Z, δZ) → Z#. This is a continuous isomorphism. Moreover
wd(Z#) = c as showed in Example 3.2 and wd(Z, δZ) = |Z| = ω.

Using the same notation of Proposition 3.17 G = (Z, δZ) and L = (Z, τ). The
difference between w(G) and w(L) is maximal for a countable group. In fact, in general
w(L) ≤ 2|L| ≤ 2|G| = 2ω = c and in our case w(L) = c.

Lemma 3.19. If n ∈ N+, G1, . . . , Gn are topological abelian groups and G = G1× . . .×
Gn, then

wd(G) = max{wd(G1), . . . , wd(Gn)}.

Lemma 3.19 works with a finite number of groups, but it fails to be true in general,
that is taking infinitely many groups:
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Remark 3.20. Consider the group K =
∏
p∈P Z(p)ω1 and observe that Kp = Z(p)ω1 , so

wd(Kp) = 1, for each p ∈ P. Moreover K ∼=top (
∏
p∈P Z(p))ω1 . Then wd(K) = w(K) =

ω1.

It follows from this remark that for a totally disconnected compact abelian group
K ∼=top

∏
p∈PKp (see Remark 1.44(b)) the equality wd(K) = supp∈Pwd(Kp) does not

hold in general. So this relation holds for w(−) but not for wd(−).

It is important to observe that for a compact abelian group K

wd(K) ≥ w(c(K)),

because c(K) is divisible, being compact and connected, and so c(K) ≤ mK for every
m ∈ N+.

Lemma 3.21. Let G be a topological abelian group such that c(G) is compact. Then

wd(G) = max{w(c(G)), wd(G/c(G))}.

Proof. The condition wd(G) > w(c(G)) is equivalent to w(mG) > w(c(G)) for every
m ∈ N+. Since c(G) is connected and compact, c(G) is divisible and so c(G) ≤ mG for
every m ∈ N+. Then

w(mG) = w((mG)/c(G)) · w(c(G))

and it follows that w(mG) = w((mG)/c(G)) for every m ∈ N+. Since (mG)/c(G) =
m(G/c(G)) and wd(G) = infm∈N+ w(mG), this yields the equalities

wd(G) = inf
m∈N+

w((mG)/c(G)) = inf
m∈N+

w(m(G/c(G))) = wd(G/c(G)),

which complete the proof.

This lemma can be improved for locally compact abelian groups:

Proposition 3.22. Let L be a locally compact abelian group. Then

wd(L) = max{w(c(L)), wd(L/c(L))}.

Proof. By Theorem 1.27 L is topologically isomorphic to Rn ×K, where n ∈ N and K
has a compact open subgroup K0. Then wd(L) = ω · wd(K) by Lemma 3.19. We have

c(L) ∼=top Rn × c(K)

where c(K) = c(K0) is compact, since K0 is open in K.
By Lemma 3.21 wd(K) = max{w(c(K)), wd(K/c(K))}. Suppose that wd(L) >

w(c(L)). Then wd(L) = wd(K) and consequently wd(K) > w(c(K)), that is wd(K) =
wd(K/c(K)). Then wd(L) = wd(K/c(K)). But K/c(K) is topologically isomorphic to
L/c(L) and hence wd(L) = wd(L/c(L)).
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Since the minimal positive integer m0 in the following lemma is uniquely determined
by the group G, we denote it by md(G).

Lemma 3.23. Let G be a topological abelian group. Then there exists a minimal positive
integer m0 ∈ N+ such that if H = m0G, then:

(a) wd(H) = w(H) = wd(G);

(b) r0(H) = r0(G);

(c) if G is pseudocompact, then H is pseudocompact too.

Proof. Since {w(mG) : m ∈ N+} is a set of cardinals, there exists m0 ∈ N+ such that
wd(G) = w(m0G) and w(m0G) ≤ w(kG) for every k ∈ N+. Let H = m0G. Then
w(H) = wd(G). Obviously r0(H) = r0(G) and if G is pseudocompact, by Fact 2.6(b) H
is pseudocompact as well being continuous image of G.

Remark 3.24. Let G be a topological abelian group and let D be a dense subgroup of
of G. As noted in the proof of Lemma 3.16, w(mD) = w(mG) for every m ∈ N+. The
sequences {w(mD) : m ∈ N+} and {w(mG) : m ∈ N+} have the same minimum and so
md(D) = md(G).

The counterpart of Lemma 3.19 for md(−) fails to be true:

Example 3.25. Let G1 = Z(2)c+ × Tc and G2 = Z(3)c × T. Then 2 = md(G1) =
md(G1 ×G2) < max{md(G1),md(G2)} = md(G2) = 3.

For G = G1× . . .×Gn, where n ∈ N+ and G1, . . . , Gn are topological abelian groups,
it is easy to see that md(G) ≥ min{md(G1), . . . ,md(Gn)}.

3.3 w-Divisibility

Definition 3.26. A topological abelian group G is w-divisible if wd(G) = w(G) > ω.

Since a topological abelian group is w-divisible if and only if w(mG) = w(G) > ω for
every m ∈ N+, this definition is justified by the fact that an abelian group G is divisible
if and only if G = mG for every integer m > 0 (see Example 3.29(a) for more details).

Fact 3.27. If D is a dense subgroup of a topological abelian group G, then D is w-
divisible if and only if G is w-divisible.

Proof. Since D is dense in G, wd(D) = wd(G) by Lemma 3.16(b).

We give some examples of w-divisible groups.

Example 3.28. (a) Every topological divisible abelian group of uncountable weight
is w-divisible.

(b) Connected compact abelian groups of uncountable weight are divisible and so w-
divisible by (a).
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(c) Connected precompact abelian groups G of uncountable weight are w-divisible; in
fact, K = G̃ is connected and so divisible (being compact), hence w-divisible by
(b). Since G is dense in G̃, Fact 3.27 applies to conclude that G is w-divisible.

(d) In general a connected abelian group of uncountable weight need not be w-divisible.
Actually, there exist connected abelian groups of every prime exponent [3].

(e) In [29, Definition 1.3] a topological group G was defined to be almost connected
whenever c(G) ∈ Λ(G). Almost connected pseudocompact abelian groups of un-
countable weight are examples of w-divisible groups.

(f) If L is a locally compact abelian group and it is connected, then L is divisible: by
Theorem 1.27 L ∼=top Rn×K, where n ∈ N andK has a compact open subgroupK0.
Since L is connected, K = c(K) ∼=top c(K0) is connected and compact, so divisible.
Consequently L is divisible too. By (a), if w(L) > ω, then L is w-divisible.

As shown by (d), connectedness is not sufficient alone to have w-divisibility, but
from (c) to (e) we weaken connectedness to almost connectedness and strengthen the
compactness-like property from precompactness to pseudocompactness, obtaining two
different sufficient conditions for w-divisibility.

Example 3.29. (a) Let K =
∏
i∈I Ki, where each Ki is a metrizable compact non-

torsion abelian group and I is an uncountable set of indices. Then K is w-divisible
of divisible weight wd(K) = |I|, because mK =

∏
i∈I mKi has weight |I| for every

m ∈ N+, since mKi 6= {0} for every i ∈ I.

(b) A product of the form K =
∏
i∈I Ki, where each Ki is a non-trivial metrizable

compact abelian group and I is an uncountable set of indices, can be w-divisible
even if some of the metrizable compact abelian groups are torsion. For example
Tω1 × Z(p), where p ∈ P, is w-divisible of divisible weight ω1.

In some case all the metrizable compact abelian groups Ki are torsion and the
product K is still w-divisible. For example

∏
p∈P Z(p)ω1 is w-divisible: it is iso-

morphic to Sω1
P , where SP is compact metrizable non-torsion.

(c) We call w-divisible product a product
∏
i∈I Ki, where each Ki is a metrizable

compact non-torsion abelian group and I is uncountable.

As noted in (b) these products are not the unique products that are w-divisible,
but they are sufficient for what we do in the following chapter.

(d) A particular case of w-divisible products are w-divisible powers, that is powers Sκ,
where S is a metrizable compact non-torsion abelian group and κ is an uncountable
cardinal.

The w-divisible products and the w-divisible powers are the main examples of w-
divisible groups and we make essential use of them in the following chapters.

Lemma 3.30. Let G =
∏
i∈I Gi where each Gi is a topological abelian group.
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(a) If Gi is w-divisible for every i ∈ I, then G is w-divisible.

(b) If I is finite, then G is w-divisible if and only if there exists i ∈ I such that
wd(Gi) = w(G) > ω (in particular this Gi is w-divisible).

Proof. (a) For every i ∈ I we have wd(Gi) = w(Gi) > ω. Then w(G) > ω and for every
m ∈ N+

w(mG) = w

(∏
i∈I

mGi

)
= |I| · sup

i∈I
w(mGi) =

= |I| · sup
i∈I

wd(Gi) = |I| · sup
i∈I

w(Gi) = w(G).

(b) By Lemma 3.19 there exists i ∈ I such that wd(G) = wd(Gi). In case G is
w-divisible, wd(G) = w(G) > ω and so wd(Gi) = w(G) > ω. To prove the converse
implication assume that there exists i ∈ I such that wd(Gi) = w(G) > ω. In particular
wd(G) = w(G) > ω by Lemma 3.16(a), that is G is w-divisible.

The converse implication of Lemma 3.30(a) does not hold in general, even in case I
is finite:

Example 3.31. Let G = G1 ×G2, where G1 = Tc and G2 = Z(p). Then

c = w(G) = wd(G) = w(G1) = wd(G1)

and G2 is far from being w-divisible.

So we have the monotonicity of w-divisibility for subgroups but not for quotients.
Indeed, the quotient of a w-divisible group need not be w-divisible; e.g., for p ∈ P take
Zc
p, which has Z(p)c as a quotient.

3.4 κ-Singularity

While w-divisibility goes in the opposite direction with respect to singularity (w-divisible
abelian groups are non-singular), we define different levels of singularity, one for each
infinite cardinal κ.

Definition 3.32. Let κ be an infinite cardinal. A topological abelian group G is κ-
singular if wd(G) ≤ κ.

Observe that a topological abelian group G is κ-singular if and only if there exists
m ∈ N+ such that w(mG) ≤ κ (see Lemma 3.34) and so ω-singular abelian groups
are precisely singular abelian groups. Moreover every topological abelian group G is
w(G)-singular.
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3.4.1 Characterization and properties

Example 3.33. Let K =
∏
i∈I Ki be a w-divisible product with |I| = κ > ω. Then K

is w-divisible and non-λ-singular for every cardinal ω ≤ λ < κ.

In the following two lemmas we give some conditions equivalent to κ-singularity.
In the second lemma we need the hypothesis that the topological abelian groups are
κ-pseudocompact. For κ = ω we find [45, Lemma 2.5], which generalized [29, Lemma
4.1].

Lemma 3.34. Let κ be an infinite cardinal and let G be a topological abelian group.
Then the following conditions are equivalent:

(a) G is κ-singular;

(b) there exists m ∈ N+ such that w(mG) ≤ κ;

(c) G̃ is κ-singular.

Proof. (a)⇔(b) is obvious.

(a)⇔(c) Since G is dense in G̃, wd(G) = wd(G̃) by Lemma 3.16(b).

The condition in (c) of the next lemma can be considered also for non-necessarily
abelian topological groups, so that κ-singularity could be defined in the general case of
topological groups.

Lemma 3.35. Let κ be an infinite cardinal and let G be a κ-pseudocompact abelian
group. Then the following conditions are equivalent:

(a) G is κ-singular;

(b) there exists m ∈ N+ such that G[m] ∈ Λκ(G);

(c) G has a closed torsion Gκ-subgroup;

(d) there exists N ∈ Λκ(G) such that N ⊆ t(G).

Proof. Let m ∈ N+ and let ϕm : G → G be the continuous homomorphism defined
by ϕm(x) = mx for every x ∈ G. Then kerϕm = G[m] and ϕm(G) = mG. Let
i : G/G[m]→ mG be the continuous isomorphism such that i ◦ π = ϕm, where π : G→
G/G[m] is the canonical projection.

(a)⇒(b) By Lemma 3.34 there exists m ∈ N+ such that w(mG) ≤ κ. Then ψ(mG) ≤
κ. Since i : G/G[m] → mG is a continuous isomorphism, so ψ(G/G[m]) ≤ κ. This
implies that G[m] is a Gκ-set of G.

(b)⇒(a) Suppose that G[m] ∈ Λκ(G). Then the quotient G/G[m] has weight ≤ κ,
hence it is compact. By Theorem 1.28 the isomorphism i : G/G[m]→ mG is also open
and consequently it is a topological isomorphism. Then w(mG) ≤ κ. By Lemma 3.34 G
is κ-singular.
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(b)⇒(c) and (c)⇔(d) are obvious.

(d)⇒(b) By Corollary 2.21(b) N is κ-pseudocompact and so N is bounded torsion
by Fact 1.36. Therefore there exists m ∈ N+ such that mN = {0}. Thus N ⊆ G[m] and
so G[m] ∈ Λκ(G) by Corollary 2.21(c).

The class of κ-singular groups is stable for subgroups. For dense subgroups we have
the following:

Lemma 3.36. Let κ be an infinite cardinal. Let D be a dense subgroup of a topological
abelian group G. Then G is κ-singular if and only if D is κ-singular.

Proof. By Lemma 3.16(b) wd(G) = wd(D). Then wd(G) ≤ κ if and only if wd(D) ≤ κ,
i.e., G is κ-singular if and only if D is κ-singular.

For κ = ω the following lemma is [26, Lemma 3.4].

Lemma 3.37. Let κ be an infinite cardinal, let G be a precompact abelian group and let
N be a closed subgroup of G.

(a) If G is κ-singular, then N and G/N are κ-singular.

(b) If G = K is compact, then K is κ-singular if and only if N and K/N are κ-
singular.

Proof. (a) follows from Lemma 3.16(a) and Proposition 3.17.

(b) The necessity is (a). Let us prove the sufficiency. Suppose that both N and K/N
are κ-singular. Let X and Y be the duals of K and K/N respectively. By Pontryagin
duality

K is κ-singular if and only if |kX| ≤ κ for some k ∈ N+. (3.1)

By Pontryagin duality Y can be identified with a subgroup of X such that X/Y ∼= N̂ .
Since N and K/N are κ-singular by the hypothesis, it follows that |m1(X/Y )| ≤ κ for
some m1 ∈ N+ and |m2Y | ≤ κ for some m2 ∈ N+. Thus there exists m ∈ N+ (m ≥
maxm1,m2) such that |m(X/Y )| ≤ κ and |mY | ≤ κ. Since m(X/Y ) = (mX + Y )/Y
has cardinality ≤ κ, mX is contained in a union

⋃
i∈I(zi + Y ), where zi ∈ mX and

|I| ≤ κ. As |mY | ≤ κ, m2X is contained in the union
⋃
i∈I(mzi +mY ), which has size

≤ κ. So |m2X| ≤ κ, i.e., K is κ-singular by (3.1).

In the following result we prove that the class of κ-singular abelian groups is closed
also under finite products.

Lemma 3.38. Let κ be an infinite cardinal. Finite products of κ-singular abelian groups
are κ-singular.

Proof. Let G = G1× . . .×Gn be such that n ∈ N+ and Gi is a κ-singular abelian group
for every i ∈ {1, . . . , n}, that is wd(Gi) ≤ κ for every i ∈ {1, . . . , n}. By Lemma 3.19
wd(G) = max{wd(G1), . . . , wd(Gn)} ≤ κ. Then wd(G) ≤ κ and G is κ-singular.
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Lemma 3.39. Let κ be an infinite cardinal and let G be a κ-singular abelian group such
that c(G) is compact. Then w(c(G)) ≤ κ.

Proof. Since G is κ-singular, by Lemma 3.34 there exists m ∈ N+ such that w(mG) ≤ κ.
But c(G) is divisible and so c(G) = mc(G) ⊆ mG. Therefore w(c(G)) ≤ κ.

3.4.2 Measuring κ-singularity

Let K be a totally dense compact abelian group. Then K ∼=top
∏
p∈PKp by Remark

1.44(b). We define

Ps,κ(K) = {p ∈ P : wd(Kp) ≤ κ} and Pm,κ(K) = {p ∈ P : w(Kp) ≤ κ}.

Observe that Pm,κ(K) ⊆ Ps,κ(K) ⊆ P. Then w(K) ≤ κ if and only if Pm,κ(K) = P.
Furthermore Ps,ω(K) = Ps(K) and Pm,ω(K) = Pm(K), where Ps(K) and Pm(K) were
introduced in [26].

Suppose that w(K) > κ. Let

Km,κ =
∏

p∈Pm,κ(K)

Kp, Ks,κ =
∏

p∈Ps,κ(K)\Pm,κ(K)

Kp and Kr,κ =
∏

p∈P\Ps,κ(K)

Kp.

If Pm,κ(K) (respectively, Ps,κ(K) \Pm,κ(K) and P \Pm,κ(K)) is empty, put Km,κ = {0}
(respectively, Ks,κ = {0} and Kr,κ = {0}). Then

K ∼=top Km,κ ×Ks,κ ×Kr,κ

and w(Km,κ) ≤ κ, while Ks,κ is κ-singular.

Lemma 3.40. Let p ∈ P and let K be a compact Zp-module.

(a) If K/pK is finite, then K ∼=top Zmp × F , where m ∈ N and F is a finite p-group.

(b) If K/pK is infinite, then w(K) = w(K/pK).

Proof. By Fact 1.42(b) X = K̂ is a p-group and X[p] is the dual of K/pK by Fact
1.32(a).

(a) Assume that K/pK is finite. Then X[p] is finite; hence X[p] is isomorphic to a
subgroup of Z(p∞)n, where n = rp(X). Since Z(p∞)n is divisible, this immersion can
be extended to j : X → Z(p∞)n. Now j is injective because if x ∈ ker j and x 6= 0 then
we can suppose without loss of generality that px = 0, that is x ∈ X[p] and this is not
possible. If d(X) is the maximal divisible subgroup of X, then d(X) is isomorphic to
Z(p∞)m with m ≤ n. Thus X ∼= Z(p∞)m ⊕ X1 where X1 has no divisible subgroups
(i.e., it is reduced) and so X1 is finite because it has finite p-rank [42]. By Pontryagin
duality K ∼=top X̂ ∼=top Zmp × F , where F = X̂1

∼= X1 is finite.
(b) follows from the fact that X is a p-group such that |X| = |X[p]|, when X[p] is

infinite.

For κ = ω the following proposition is [26, Proposition 4.3].
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Proposition 3.41. Let κ be an infinite cardinal and let K be a totally disconnected
compact abelian group such that P \ Pm,κ(K) is infinite. Then there exists a continuous
surjective homomorphism of K onto a w-divisible power Sκ

+
.

Proof. By Lemma 3.40 P \ Pm,κ(K) = {pn : n ∈ N+} ⊆ P is an infinite subset such that
w(K/pnK) > κ for every n ∈ N+. Since, for n ∈ N+, K/pnK is a compact abelian group
of exponent pn and weight > κ, it is topologically isomorphic to Z(pn)w(K/pnK), where
w(K/pnK) ≥ κ+. This yields that for every n ∈ N+ there exists a continuous surjective
homomorphism fn : K/pnK → Z(pn)κ

+
. Moreover Kq = pnKq ≤ pnK for every prime

q 6= pn. Therefore pnK coincides with the subgroup pnKpn ×
∏
q∈P,q 6=pn Kq of K. So

K/pnK ∼=top Kpn/pnKpn and consequently fn can be identified with f ′n : Kpn/pnKpn →
Z(pn)κ

+
. Then

f =
∏
n∈N+

f ′n :
∏
n∈N+

Kpn/pnK →
∏
n∈N+

Z(pn)κ
+ ∼=top S

κ+

π

is a continuous surjective homomorphism. Hence the composition of the continuous
surjective homomorphism K ∼=top

∏
p∈PKp →

∏∞
n∈N+

Kpn/pnKpn with f is a continuous

surjective homomorphism K → Sκ
+

π .

In the next lemma we show that the sets Pm,κ(K) and Ps,κ(K) describe completely
the κ-singularity of a compact abelian group K.

Lemma 3.42. Let κ be an infinite cardinal and let K be a totally disconnected compact
abelian group. Then K is κ-singular if and only if Ps,κ(K) = P and P\Pm,κ(K) is finite.

Proof. Suppose that Ps,κ(K) = P and Ps,κ(K)\Pm,κ(K) is finite. ThenK = Km,κ×Ks,κ,
where Km,κ is metrizable and Ks,κ is κ-singular by Lemma 3.37. Then K is κ-singular
by Lemma 3.37 again.

To prove the converse implication, suppose that P \ Pm,κ(K) is infinite. By Propo-
sition 3.41 there exists a continuous surjective homomorphism of K onto a w-divisible
power Sκ

+
. Since Sκ

+
is non-κ-singular, then K is non-κ-singular as well by Lemma

3.37. If P 6= Ps,κ(K) then again Lemma 3.37 implies that K is non-κ-singular.

3.5 The stable weight

Lemma 3.21 splits the study of the divisible weight of a compact abelian group in two
cases: the connected case is trivial as connected groups are already w-divisible; the more
complicated totally disconnected case is analyzed in this section.

Let K be a totally disconnected compact abelian group. Then K ∼=top
∏
p∈PKp by

Remark 1.44(b) and in this section we identify the two groups, consideringK =
∏
p∈PKp.

Let
κp = w(Kp)

for each p ∈ P. In particular
w(K) = sup

p∈P
κp.
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Definition 3.43. The stable weight of a totally disconnected compact abelian group K
is ws(K) = wd(K), when P \ Pm(K) is finite, otherwise let

ws(K) = inf
n∈N

w

 ∏
p∈P,p>n

Kp

 .

From the definition it follows that in case P \ Pm(K) is infinite then

ws(K) = inf
n∈N

sup
p∈P,p>n

κp > ω.

Since supp∈P,p>n κp is a decreasing sequence of cardinals, it stabilizes and so there exists
n0 ∈ N such that

ws(K) = w

 ∏
p∈P,p>n0

Kp

 = sup
p∈P,p>n0

κp.

In analogy with w-divisible abelian groups, which have maximal divisible weight, we
introduce totally disconnected compact abelian groups that have maximal stable weight:

Definition 3.44. A totally disconnected compact abelian group is stable if ws(K) =
w(K) > ω.

Lemma 3.45. If K is a totally disconnected compact abelian group, then ws(K) ≤
wd(K). In particular, K stable implies K w-divisible.

Proof. By the definition ws(K) = wd(K) if P\Pm(K) is finite. So suppose that P\Pm(K)
is infinite. As noted in the foregoing part of this section, there exists n0 ∈ N such that

ws(K) = sup
p∈P,p>n0

κp.

By Lemma 3.23 wd(K) = w(H), where H = md(K)K. Take n1 ∈ N such that n1 ≥
max{n0,md(K)}. Consequently

∏
p∈P,p>n1

Kp ≤ H and so

ws(K) = w

 ∏
p∈P,p>n1

Kp

 ≤ w(H) = wd(K).

The inequality of this lemma can be strict only in case wd(K) = wd(Kp) for some
p ∈ P, p < n0: if wd(K) > ws(K), then

wd(K) = w(md(K)K) = w

 ∏
p∈P,p≤n0

md(K)Kp

 · ws(K) = w

 ∏
p∈P,p≤n0

md(K)Kp


by Lemma 3.19; since this is a finite product, wd(K) = wd(Kp) for some prime p ≤ n0

again by Lemma 3.19.
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Let K be a totally disconnected compact abelian group. By the definition ws(K) =
wd(K) ≤ ω when P\Pm(K) is finite and in particular when K is metrizable. For a better
understanding of ws(K) in the uncountable case assume that P \ Pm(K) is infinite and
define the d-spectrum of K as

Π(K) = {p ∈ P \ Pm(K) : κp ≤ ws(K)} = {p ∈ P : ω < κp ≤ ws(K)}.

The complement of Π(K) in P \ Pm(K) is

πf (K) = {p ∈ P \ Pm(K) : κp > ws(K)}.

Since πf (K) is finite by the definition of the stable weight, Π(K) is infinite. Moreover
we have the following partition:

Π(K) = π∗(K) ∪ π(K),

where

π∗(K) = {p ∈ P \ Pm(K) : κp < ws(K)} and π(K) = {p ∈ P \ Pm(K) : κp = ws(K)}.

So we have the partition P = Pm(K) ∪ π∗(K) ∪ π(K) ∪ πf (K) and

K =
∏

p∈Pm(K)

Kp ×
∏

p∈π∗(K)

Kp ×
∏

p∈π(K)

Kp ×
∏

p∈πf (K)

Kp.

Let

met(K) =
∏

p∈Pm(K)

Kp, sc(K) =
∏

p∈Π(K)

Kp and nst(K) =
∏

p∈πf (K)

Kp.

Then
K = met(K)× sc(K)× nst(K),

where met(K) is metrizable, while nst(K) =
∏
p∈πf (K)Kp has no stable subgroups,

because nst(K) is a finite product and since every closed subgroup N of nst(K) is of the
form N =

∏
p∈πf (K)Np by Remark 1.44(b). We see in Lemma 3.47(a) that the stable

core sc(K) of K is stable when Π(K) 6= ∅.
For sake of completeness, set

Π(K) = ∅ and πf (K) = P \ Pm(K), whenever |P \ Pm(K)| <∞.

Claim 3.46. A totally disconnected compact abelian group K is stable if and only if
P \ Pm(K) is infinite and πf (K) = ∅.

Proof. Suppose that p ∈ πf (K). Then ws(K) < κp ≤ w(K) and so K is not stable. If
P \ Pm(K) is finite, then ws(K) ≤ ω and K is not stable.

Assume that P \ Pm(K) is infinite and πf (K) is empty. Then

ws(K) = sup
p∈P\Pm(K)

κp = w(K) > ω,

that is K is stable.
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Lemma 3.47. Let K be a non-singular totally disconnected compact abelian group.
Then:

(a) if P \ Pm(K) is infinite, then sc(K) is stable, so ws(sc(K)) = w(sc(K)) = ws(K);

(b) either wd(K) = wd(Kp) for some p ∈ P or wd(K) = ws(K) = supp∈Π(K) κp.

Proof. (a) Since P \ Pm(K) = P \ Pm(sc(K)) is infinite and πf (sc(K)) = ∅, Claim 3.46
applies.

(b) Suppose that wd(K) > wd(Kp) for every p ∈ P. Then P \ Pm(K) is infinite and
so also Π(K) is infinite.

By (a) sc(K) is stable and

ws(sc(K)) = wd(sc(K)) = w(sc(K)) = sup
p∈Π(K)

κp = ws(K).

Since
wd(K) = max{wd (nst(K)), wd(sc(K))}

by Lemma 3.19, and wd(K) > wd(Kp) for all p ∈ P by our hypothesis, it follows that

wd(K) = wd(sc(K)).

Therefore wd(K) = wd(sc(K)) = w(sc(K)) = ws(K).

We see in Chapter 4 that when wd(K) > wd(nst(K)), the stable core sc(K) plays
an essential role as far as projections on products are concerned.

3.6 Super-κ-singularity

For every infinite cardinal κ we introduce another level of singularity, which implies κ-
singularity. Indeed in Theorem C we use super-singular groups, which are necessarily
singular. Since we want to generalize Theorem C proving Theorem Cκ, we have to
define the counterpart of this concept for every κ. To define it analogously as we do for
κ-singularity, we first introduce another cardinal invariant based on the weight:

Definition 3.48. Let G be a topological abelian group. The super-divisible weight of G
is

wsd(G) = inf{w(p1 · . . . · pnG) : p1, . . . , pn ∈ P are distinct, n ∈ N+}.

Observe that wsd(G) = inf{w(mG) : m ∈ N+, m square free}.

Remark 3.49. The super-divisible weight has properties analogous to those of the
divisible weight. By the property of cardinal numbers there exist p1, . . . , pn0 , with n0 ∈
N+, distinct primes such that wsd(G) = w(p1 · . . . · pn0G). In analogy with what is done
for wd(−) (see Lemma 3.23), we call msd(G) = p1 · . . . · pn0 .

Another case in which wsd(−) behaves analogously to wd(−) is that of Lemma 3.16
and the proof is very similar. In fact, if G is a topological abelian group and H a
subgroup of G, then:



48 CHAPTER 3. THE DIVISIBLE WEIGHT

(a) wsd(H) ≤ wsd(G);

(b) if H is dense in G, then wsd(H) = wsd(G).

For G topological abelian group

wsd(G) ≥ wd(G)

and the inequality can be strict:

Example 3.50. Let K = Z(p2)κ, where κ is an infinite cardinal. Then wsd(K) = κ,
while wd(K) = 0.

Using the super-divisible weight we introduce the following concept. For κ = ω we
find precisely super-singular groups (see Lemma 3.52).

Definition 3.51. Let κ be an infinite cardinal. A topological group G is super-κ-singular
if there exist p1, . . . , pn, with n ∈ N+, distinct primes such that wsd(G) ≤ κ.

The next lemmas give conditions equivalent to super-κ-singularity. They are the
counterpart of Lemmas 3.34 and 3.35.

Lemma 3.52. Let κ be an infinite cardinal and let G be a topological abelian group.
Then the following conditions are equivalent:

(a) G is super-κ-singular;

(b) there exist distinct primes p1, . . . , pn, with n ∈ N+, such that w(p1 · . . . · pnG) ≤ κ;

(c) G̃ is super-κ-singular.

Proof. (a)⇔(b) is clear, because msd(G̃) = p1 · . . . · pn.

(b)⇔(c) Since G is dense in G̃, it follows that wsd(G) = wsd(G̃) as observed in
Remark 3.49(b).

Lemma 3.53. Let κ be an infinite cardinal and let G be a κ-pseudocompact abelian
group. Then the following conditions are equivalent:

(a) G is super-κ-singular;

(b) there exist distinct primes p1, . . . , pn, with n ∈ N+, such that G[p1 ·. . .·pn] ∈ Λκ(G);

(c) G has a closed Gκ-subgroup of exponent p1 · . . . ·pn, where p1, . . . , pn, with n ∈ N+,
are distinct primes;

(d) there exists N ∈ Λκ(G) such that N ⊆ Soc(G).
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Proof. Let m ∈ N+ and let ϕm : G → G be the continuous homomorphism defined
by ϕm(x) = mx for every x ∈ G. Then kerϕm = G[m] and ϕm(G) = mG. Let
i : G/G[m]→ mG be the continuous isomorphism such that i ◦ π = ϕm, where π : G→
G/G[m] is the canonical projection.

(a)⇒(b) By Lemma 3.52 there exist p1, . . . , pn ∈ P distinct primes such that w(p1 ·
. . . · pnG) ≤ κ. Let m = p1 · . . . · pn. Then ψ(mG) ≤ κ. Since i : G/G[m] → mG is a
continuous isomorphism ψ(G/G[m]) ≤ κ. This implies that G[m] is a Gκ-set of G.

(b)⇒(a) Let m = p1 · . . . · pn. Suppose that G[m] ∈ Λκ(G). Then the quotient
G/G[m] has weight ≤ κ, hence it is compact. By Theorem 1.28 the isomorphism i is
also open and consequently it is a topological isomorphism. Then w(mG) ≤ κ and so G
is super-κ-singular by Lemma 3.52.

(b)⇒(c) and (c)⇔(d) are obvious.
(d)⇒(b) Let N ∈ Λκ(G) be of exponent p1 · . . . · pn, where p1, . . . , pn are distinct

primes. Thus N ⊆ G[p1 · . . . · pn] and so G[p1 · . . . · pn] ∈ Λκ(G) by Corollary 2.21(c).

Lemma 3.54. Let κ be an infinite cardinal and let G be a topological abelian group.

(a) If G is super-κ-singular, then every subgroup of G is κ-singular.

(b) If G is κ-pseudocompact and N ∈ Λκ(G), then G is super-κ-singular if and only if
N is super-κ-singular.

Proof. (a) immediately follows from Lemma 3.52.
(b) Assume that N is super-κ-singular. Then there exists M ∈ Λκ(N) such that

M ⊆ Soc(N) by Lemma 3.53. Therefore M ⊆ Soc(G). By Corollary 2.21(a) M ∈ Λκ(G)
and so G is super-κ-singular.
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Chapter 4

Projection onto products

As noted in the introduction, in Theorem B the condition involving the projection of
the compact abelian group onto an uncountable power of a compact non-torsion abelian
group, that is a (non-singular) w-divisible power, was important in the proof of that
theorem. Since we want to generalize Theorem B for every infinite cardinal κ, proving
Theorem Bκ, in this chapter we study when it is possible for a compact abelian group
to admit a continuous surjective homomorphism onto a w-divisible power which is non-
κ-singular.

This problem of “projecting” a compact abelian group onto a special product or
power has interest also on its own; indeed the following theorem is a well known result.
It could be obtain also as a standard application of Pontryagin duality to [1, Theorem
1.1].

Theorem 4.1. For every non-metrizable compact abelian group K there exists a con-
tinuous surjective homomorphism of K onto a product

∏
i∈I Ki of non-trivial metrizable

compact abelian groups with |I| = w(K).

Proof. Let w(K) = κ > ω and X = K̂. Then |X| = κ > ω and X contains a direct sum⊕
i∈I Ci of non-trivial cyclic subgroups Ci with |I| = |X| = w(K). By Pontryagin duality

there exists a continuous surjective homomorphism K →
∏
i∈I Ki, where Ki = Ĉi 6= {0}

is either finite cyclic or Ki
∼=top T.

In this theorem the weight of the product is maximal. Indeed it cannot exceed the
weight of K.

In the following remark we discuss the situation of Theorem 4.1 in case all Ki are the
same group, that is we consider projections onto powers of maximal weight of non-trivial
compact abelian groups.

Remark 4.2. Let K be a compact abelian group of weight κ > ω and let X = K̂. Since
r(X) = |X| = κ, there are three cases.

(a) If r0(X) = κ, then X has a subgroup isomorphic to Z(κ) and so there exists a
continuous surjective homomorphism K → Tκ by Pontryagin duality.

51
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(b) If there exists p ∈ P such that rp(X) = κ, then X has a subgroup isomorphic to
Z(p)(κ) and so there exists a continuous surjective homomorphism K → Z(p)κ.

(c) If r0(X) < κ and rp(X) < κ for every p ∈ P, then supp∈P rp(X) = κ and X

has a subgroup isomorphic to
⊕

p∈P Z(p)(rp(X)). Then there exists a continuous

surjective homomorphism K →
∏
p∈P Z(p)rp(X). Moreover w

(∏
p∈P Z(p)rp(X)

)
=

supp∈P rp(X) = κ.

In (a) and (b) also the converse implications hold.
Unlike the previous two cases, in the third one it is not possible to find a contin-

uous surjective homomorphism onto a w-divisible power Sκ. Indeed suppose that this
surjective continuous homomorphism exists. Since r0(X) < κ, |X| = |t(X)| and so
w(K/c(K)) = κ by Theorem 1.30 and Lemma 1.32(b). Hence we suppose without loss
of generality that K is totally disconnected. By Remark 1.44(c) there exists a continuous

surjective homomorphism Kp → Sκp for each p ∈ P. This means that Xp = K̂p ≥ Ŝp
(κ)

and Ŝp is p-torsion in view of Fact 1.42(b) for every p ∈ P. Let q ∈ P be such that Sq is
non-trivial. Then rq(Ŝq) > 0 and so rq(Xq) ≥ κ. But this is not possible since rp(X) < κ
for every p ∈ P by hypothesis.

In the metrizable case there is some exception:

Lemma 4.3. A metrizable compact abelian group K admits no continuous surjective
homomorphism onto a product

∏
i∈I Ki of non-trivial metrizable compact abelian groups

with |I| = ω if and only if r0(K̂) and rp(K̂) are finite for every p ∈ P and rp(X) = 0 for
all but finitely many p ∈ P.

Proof. Let X = K̂. If K admits a continuous surjective homomorphism onto a product∏
i∈I Ki of non-trivial metrizable compact abelian groups with |I| = ω, this is equivalent

to say that X has a subgroup of the form
⊕

i∈I K̂i, where each K̂i is a non-trivial abelian
group of cardinality ≤ ω and |I| = ω. This happens if and only if either r0(X) = ω, or
rp(X) = ω for some p ∈ P, or rp(X) 6= 0 for infinitely many p ∈ P.

In this chapter we consider first the problem of when a compact abelian group K
admits a continuous surjective homomorphism onto a product

∏
i∈I Ki of non-torsion

metrizable compact abelian groups with |I| = w(K) (we add “non-torsion” with respect
to Theorem 4.1). Since wd(

∏
i∈I Ki) = w(

∏
i∈I Ki), and the divisible weight is monotone

under continuous surjective homomorphisms of compact abelian groups (see Proposition
3.17), we obtain the restriction |I| ≤ wd(K). Theorem 4.11 shows that this necessary
condition is also sufficient in case K is non-metrizable.

Moreover Theorem 4.17 shows that for non-singular compact abelian groups K ad-
mitting a continuous surjective homomorphism onto a w-divisible power Swd(K) there
is a trichotomy, and its Corollary 4.18 gives a necessary and sufficient condition for the
existence of such a projection.
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Remark 4.4. Every compact non-torsion abelian group S admits a continuous surjective
homomorphism onto a metrizable compact non-torsion abelian group S0.

To prove this we consider the dual group X of S. Since S is not bounded torsion,
X is not bounded torsion as well, by Pontryagin duality. Then for every n ∈ N+

there exists xn ∈ X such that nxn 6= 0. The subgroup X0 = 〈xn : n ∈ N+〉 of X is
not bounded torsion and countable. By Pontryagin duality there exists a continuous
surjective homomorphism of S onto S0 = X̂0 and S0 is compact, metrizable and non-
torsion.

Let κ be an infinite cardinal.
As a consequence of the previous part of this remark, a compact abelian group K

admitting a continuous surjective homomorphism onto a product
∏
i∈I Ki of compact

non-torsion abelian groups Ki with |I| = κ, admits also a continuous surjective homo-
morphism onto

∏
i∈I K0,i, where each K0,i is a compact metrizable non-torsion abelian

group.
Analogously if K is a compact abelian group admitting a continuous surjective homo-

morphism onto a power Sκ of a compact non-torsion abelian group S, then there exists
a continuous surjective homomorphism of K onto Sκ0 , where S0 is a compact metrizable
non-torsion abelian group.

In particular this shows that a compact abelian group K admits a continuous sur-
jective homomorphism onto a product

∏
i∈I Ki of compact non-torsion abelian groups if

and only if K admits a continuous surjective homomorphism onto a product
∏
i∈I K0,i

of metrizable compact non-torsion abelian groups. And analogously K admits a contin-
uous surjective homomorphism onto a power Sκ of a compact non-torsion abelian group
S if and only if K admits a continuous surjective homomorphism onto a power Sκ0 of a
metrizable compact non-torsion abelian group S0.

4.1 The “local” case

Claim 4.5. [26, Claim 4.7] Let p ∈ P, let K be a compact Zp-module and N a closed
subgroup of K isomorphic to Zσp , for some cardinal σ > ω. Then there exists a continuous
surjective homomorphism of K onto Gσp .

Proof. Let N =
∏∞
n=1Nn, where each Nn

∼=top Zσp , and M =
∏∞
n=1 p

nNn. Then N/M is
topologically isomorphic to Gσp . Let K0 = K/M . Then K0[pn] ⊇ (N/M)[pn] ∼=top Z(pn)σ

for every n ∈ N+. Hence, since pn−1K0[pn] contains Z(p)σ,

w(pn−1K0[pn]) ≥ σ. (4.1)

By Lemma 1.45 there exists a closed subgroup N0 of K0 such that N0
∼=top Zσ1

p ,
L0 = K0/N0

∼=top
∏∞
n=1 Z(pn)βn for appropriate cardinals σ1, βn, with n ∈ N+, and the

canonical projection π : K0 → L0 satisfies π(t(K0)) = t(L0). Since K0[pn] is compact
and trivially meets N0 = kerπ, it follows that π �K0[pn]: K0[pn]→ L0[pn] is a topological
isomorphism. Consequently pn−1L0[pn] is topologically isomorphic to pn−1K0[pn] and
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hence w(pn−1L0[pn]) ≥ σ for every n ∈ N+ by (4.1). Therefore supn∈N,n≥m βn ≥ σ for
every m ∈ N+.

Let us prove that there exists a continuous surjective homomorphism f : L0 → Gσp .
Then, combining it with π and with the canonical projection of K onto K0, we are done.
Infinitely many βn are infinite. So it is possible to suppose without loss of generality that
all βn are infinite. If there are infinitely many βn such that βn ≥ σ, it is immediately
possible to find the wanted f . Otherwise there exists n0 ∈ N+ such that ω ≤ βn < σ for
every n ≥ n0, with supn∈N,n≥n0

βn = σ. Take an increasing subsequence {βnk}k∈N+ of
{βn}n∈N+ such that supk∈N+

βnk = σ. Observe that

∞∏
k=1

Z(pnk)βnk =
∞∏
k=1

S
βnk
k ,

where Sk =
∏∞
i=k Z(pni) is a metrizable compact non-torsion abelian group. For every

k ∈ N+ there exists a continuous surjective homomorphism of Sk onto Gp and so we
have the continuous surjective homomorphism f : L0 → Gσp which is the composition

L0 →
∏∞
k=1 S

βnk
k → Gσp .

Lemma 4.6. Let p ∈ P and let K be a non-singular compact Zp-module. Then there
exists a continuous surjective homomorphism of K onto Gwd(K)

p .

Proof. Let us reduce to the case when K is w-divisible. By Lemma 3.23 the subgroup
H = md(K)K of K is such that w(H) = wd(K) and it is w-divisible because K is non-
singular. Consider the continuous surjective homomorphism ϕmd(K) : K → H given by
the multiplication by md(K). Clearly every continuous surjective homomorphism of H
onto Gwd(K)

p composed with ϕmd(K) gives rise to a continuous surjective homomorphism

of K onto Gwd(K)
p . This is why we suppose without loss of generality that K itself is

w-divisible.
Let X = K̂. Observe that |X| = w(K) > ω. By Remark 1.17 there exists a basic

subgroup B0 of X such that, for some cardinals αn, with n ∈ N+, and σ,

B0
∼=
∞⊕
n=1

Z(pn)(αn) and X/B0
∼= Z(p∞)(σ′);

put |X/B0| = σ and note that σ = σ′ in case σ > ω. As in Remark 1.17, for every
m ∈ N+ let

B1,m =
m⊕
n=1

Z(pn)(αn) and B2,m =
∞⊕

n=m+1

Z(pn)(αn).

Then X = X1,m ⊕B1,m, where

X1,m = pmX +B2,m and X1,m/B2,m
∼= X/B0

∼= Z(p∞)(σ′).

By Corollary 3.14 |X| = |mX| for every m ∈ N+. Moreover |X| = |mX1,n| for every
m,n ∈ N+; indeed

|mX1,n| = |mpnX +mB2,n| = |X|
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by Corollary 3.14 and our hypothesis on K. Consider, for every n ∈ N+, the sequence
of cardinals {βn : n ∈ N+} where βn = sup{αm : m ∈ N,m ≥ n}. By the property
of cardinals, there exists n0 ∈ N+ such that βn = βn0 = β for every n ≥ n0. Thus
|X| = σ · β, in fact

|X| = |X1,n0 | = |X1,n0/B2,n0 | · |B2,n0 | = σ · β.

If |X| = σ, then σ > ω because |X| = w(K) > ω. So in this case σ = σ′ and X/B0
∼=

Z(p∞)(σ). By Pontryagin duality K has a subgroup topologically isomorphic to Zσp .
Claim 4.5 applies to conclude that there exists a continuous surjective homomorphism
of K onto Gσp .

If |X| > σ, then |X| = |B2,n0 | = β > ω. We prove that

B2,n0 ≥
⊕
n∈N+

Z(pn)(β). (4.2)

Let
A = {n ∈ N : n ≥ n0, αn = β}.

If A is infinite, then
⊕

n∈A Z(pn)(αn) =
⊕

n∈A Z(pn)(β) contains a subgroup topologically
isomorphic to

⊕
n∈N+

Z(pn)(β), so (4.2) holds true. Assume that A is finite. Then there
exists an appropriate n1 ≥ n0 such that β > αn for every n ≥ n1. Still β = sup{αm :
m ≥ n1} holds true, because |X| = |mX| for every m ∈ N+ as noted before, and
|X| = |B2,n0 | by our hypothesis |X| > σ. There exists an infinite subset I of N+ such
that {αn : n ∈ I} is strictly increasing with β = sup{αm : m ∈ I} and n ≥ n1 for all
n ∈ I. Clearly β = supm∈I′ αm holds true also for every infinite subset I ′ of I. We can
write I =

⋃
n∈N+

In, where each In is infinite and In ∩ Im = ∅ for every n 6= m. Then
for every n ∈ N+ ⊕

m∈In

Z(pm)(αm) ≥
⊕

m∈In,m≥n
Z(pn)(αm) ∼= Z(pn)(β).

Since B2,n0 ≥
⊕

n≥n1
Z(pn)(αn), we see that B2,n0 contains also

⊕
n∈I

⊕
m∈In Z(pm)(αm)

and the latter group contains a subgroup topologically isomorphic to
⊕

n≥n1
Z(pn)(β).

Thus (4.2) holds also in this case. By Pontryagin duality there exists a continuous
surjective homomorphism of K onto the dual of the latter set, that is topologically
isomorphic to Gβp .

4.2 Projection onto w-divisible products

Fact 4.7. A metrizable compact non-torsion abelian group S admits as a quotient one
of the following four groups: either T, or Gp, or Zp for some p ∈ P, or Sπ for some
infinite π ⊆ P.

Proof. Let X = Ŝ. Then X is a countable discrete abelian group, which is not bounded
torsion by Pontryagin duality. If X contains an isomorphic copy of Z, then S admits T
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as a quotient. If π = {p ∈ P : rp(X) > 0} is infinite, since X has a subgroup isomorphic
to
⊕

p∈π Z(p), it follows that S admits Sπ as a quotient. If π is finite, there exists p ∈ P
such that tp(X) is infinite. So we can assume without loss of generality that X is an
infinite p-group. By Remark 1.17 there exists a basic subgroup B0

∼=
⊕∞

n=1 Z(pn)(αn)

of X, for some cardinals αn ≤ ω, with n ∈ N+, such that X/B0
∼= Z(p∞)(σ) for some

cardinal σ. If there exists a sequence {nk}k∈N+ of positive integers such that nk → ∞
and αnk > 0 for every k ∈ N+, then B0 contains a subgroup isomorphic to

⊕∞
k=1 Z(pnk).

Since the latter group obviously contains a copy of the group
⊕∞

n=1 Z(pn), we conclude
that in this case S admits Gp as a quotient by Pontryagin duality. If this subsequence
does not exist, B0 is bounded torsion, that is, there exists n ∈ N+ such that pnB0 = {0}.
By Remark 1.17 X ∼= pnX⊕B0, where X/B0

∼= Z(p∞)(σ). Note that σ > 0, otherwise X
would be bounded torsion and consequently S would be torsion by Pontryagin duality.
So X contains a copy of the group Z(p∞), therefore S admits Zp as a quotient again by
Pontryagin duality.

Example 4.8. Let p ∈ P. There exists a continuous surjective homomorphism Gp →
Gωp .

To see this consider for every n ∈ N+ an increasing sequence of natural numbers
{mn,k}k∈N+ . Then Gp ∼=top

∏∞
n=1

∏∞
k=1 Z(pmn,k), which admits a continuous surjective

homomorphism onto Gωp .

In the following remark we show the cases in which a singular compact abelian group
admits a projection onto a product

∏
i∈I Ki, where each Ki is a metrizable compact non-

torsion abelian group and |I| = ω. The condition wd(K) = ω is necessary to have this
projection. Indeed, if wd(K) < ω, then K is bounded torsion and it admits no continuous
surjective homomorphism onto a product of a metrizable compact non-torsion abelian
group S.

Remark 4.9. A singular compact non-torsion abelian group K admits a continuous
surjective homomorphism onto

∏∞
n=1Kn, where each Kn is a metrizable compact non-

torsion abelian group, precisely when some of the following occurs:

(a) there exists a continuous surjective homomorphism f : K → Tω if and only if
r0(K̂) = ω;

(b) for some p ∈ P, there exists a continuous surjective homomorphism f : K → Gωp if
and only if rp(pmK̂) = ω for every m ∈ N (i.e., wd((K/c(K))p) = ω);

(c) there exists a continuous surjective homomorphism f : K →
∏∞
n=0 Sπn , where each

πn is an infinite subset of P, if and only if there exists an infinite subset π of P
such that rp(K̂) 6= 0 for every p ∈ π.

Proof. Assume that K admits a continuous surjective homomorphism onto
∏∞
n=1Kn,

where each Kn is a metrizable compact non-torsion abelian group. Since K is singular
and non-torsion, there exists m ∈ N+ such that w(mK) = ω. Moreover there exists
a continuous surjective homomorphism of mK onto

∏∞
n=1mKn, where each mKn is
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a metrizable compact non-torsion abelian group. So we can assume without loss of
generality that K is metrizable. Then X = K̂ is countable.

By Pontryagin duality there exists such a continuous surjective homomorphism if
and only if X contains

⊕∞
n=1Xn, where each Xn is not bounded torsion (otherwise Kn

would be torsion by Pontryagin duality). Moreover by Fact 4.7 each Kn admits as a
quotient one of the following four types of groups: either T or Gp or Zp for some p ∈ P
or Sπ for some infinite π ⊆ P.

(a) Suppose that there exists a continuous surjective homomorphism K → Tω.
Equivalently X contains a subgroup isomorphic to Z(ω), that is r0(X) = ω.

(b) If there exists a continuous surjective homomorphism K → Gωp , then X has a
subgroup isomorphic to

⊕∞
n=1 Z(pn)(ω). Consequently rp(pnX) = ω for every n ∈ N.

Suppose that rp(pnX) = ω for every n ∈ N. By Remark 1.17 there exists a basic
subgroupB0 ofX, that isB0

∼=
⊕∞

n=1 Z(pn)(αn) andX/B0
∼= Z(p∞)(σ) for some cardinals

αn, with n ∈ N+, and σ.
If αn > 0 for infinitely many n ∈ N+, then X contains a subgroup isomorphic to⊕∞
n=1 Z(pn). By Pontryagin duality there exists a continuous surjective homomorphism

K → Gp. By Example 4.8 there exists a continuous surjective homomorphism Gp → Gωp .
If αn = 0 for all but finitely many n ∈ N+, it means that pmB0 = {0} for some

m ∈ N. Therefore, following the notations of Remark 1.17, B2,m = {0} and so X1,m =
pmX +B2,m = pmX and

X1,m = X1,m/B2,m
∼= X/B0

∼= Z(p∞)(σ).

Since by hypothesis rp(pmX) = ω, it follows that rp(Z(p∞)(σ)) = ω. Therefore σ = ω.
Since pmX is a subgroup of X, by Pontryagin duality there exists a continuous surjective
homomorphism K → Zωp and Zωp admits a continuous surjective homomorphism onto
Gωp .

(c) Suppose that there exists a continuous surjective homomorphism K →
∏∞
n=1 Sπn

where each πn is an infinite subset of P. Therefore X ⊇
⊕∞

n=1

⊕
p∈πn Z(p). Then

π =
⋃∞
n=1 πn is an infinite subset of of P such that rp(X) 6= 0 for every p ∈ π.

Conversely, if there exists an infinite subset π of P such that rp(X) 6= 0 for every p ∈
π, then there exist countably many infinite subsets πn pairwise with trivial intersection,
where n ∈ N+, of π such that

⋃∞
n=1 πn = π. Then

X ⊇
⊕
p∈π

Z(p) =
∞⊕
n=1

⊕
p∈πn

Z(p).

By Pontryagin duality there exists a continuous surjective homomorphism of K onto∏∞
n=1 Sπn .

The next claim is the totally disconnected case of Theorem 4.11 and it is applied in
the proof of that theorem.

Claim 4.10. If K is a non-singular totally disconnected compact abelian group, then
there exists a continuous surjective homomorphism of K onto a w-divisible product of
weight wd(K).
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Proof. As K is totally disconnected, we can write K ∼=top
∏
p∈PKp by Remark 1.44(b).

Let κp = w(Kp) for every p ∈ P. As K is non-metrizable, P \ Pm(K) 6= ∅.
If P \ Pm(K) is finite, then by Lemma 3.19

wd(K) = max{wd(Kp) : p ∈ P \ Pm(K)}.

So there exists p ∈ P \ Pm(K) such that wd(K) = wd(Kp). We can apply Lemma 4.6 to
the non-singular Zp-module Kp to find a continuous surjective homomorphism from Kp

to Swd(Kp) = Gpwd(K). Take the composition of this homomorphism with the canonical
projection K → Kp. We can argue in the same way when wd(K) = wd(Kp) for some
p ∈ P. Therefore from now on we assume that wd(K) > wd(Kp) for all p ∈ P and this
implies that P \ Pm(K) is infinite. By Lemma 3.47(b) we have wd(K) = ws(K).

For p ∈ P \ Pm(K) consider the quotient Kp/pKp. If X = K̂p, by Fact 1.42(b)
X is a p-group. By Fact 1.32(a) we know that X[p] ∼=top K̂p/pKp. Moreover, since
|X| is not countable, |X[p]| = |X| = κp. By Pontryagin duality Kp/pKp

∼=top Z(p)κp .
Consequently there exists a continuous surjective homomorphism of Kp onto Z(p)κp .

Since P \ Pm(K) is infinite, Π(K) is not empty and so infinite as well. We have two
cases. If π(K) is infinite, then there exists a continuous surjective homomorphism

K →
∏

p∈π(K)

Z(p)wd(K) ∼=top S
wd(K)
π(K) ,

as κp = ws(K) = wd(K) for all p ∈ π(K). Otherwise π(K) is finite and so π∗(K) is
infinite, because Π(K) is infinite and Π(K) = π∗(K) ∪ π(K) is a partition of Π(K).
So we can suppose without loss of generality that Π(K) = π∗(K). By Lemma 3.47(b)
ws(K) = supp∈Π(K) κp. Moreover wd(K) = ws(K) > κp for all p ∈ Π(K). Order the
set {κp : p ∈ Π(K)} so that κp1 < κp2 < . . . < κpn < . . . and note that the inclusion
{pn : n ∈ N+} ⊆ Π(K) could be proper. Nevertheless ws(K) = supn∈N+

κpn. Let
C =

∏∞
n=1 Z(pn)κpn . Then w(C) = ws(K) = wd(K) and

C =
∞∏
n=1

Z(pn)κpn =
∞∏
n=1

n∏
i=1

Z(pn)κpi =
∞∏
i=1

∞∏
n=i

Z(pn)κpi =
∞∏
i=1

S
κpi
πi ,

where πi = {pn : n ∈ N+, n ≥ i} is infinite for every i ∈ N+. To end up the proof note
that C is a w-divisible product of weight wd(K).

The next result is Theorem D of the introduction.

Theorem 4.11. Let K be a non-singular compact abelian group. There exists a con-
tinuous surjective homomorphism of K onto a w-divisible product

∏
i∈I Ki if and only if

ω < |I| ≤ wd(K).
In particular every non-singular compact abelian group K admits a continuous sur-

jective homomorphism onto a w-divisible product of weight wd(K).
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Proof. Since K is non-singular, κ = wd(K) > ω. According to Lemma 3.21

wd(K) = max{w(c(K)), wd(K/c(K))}.

If wd(K) = w(c(K)), there exists a continuous surjective homomorphism of K onto Tκ
by Fact 1.41. So it is possible to suppose that wd(K) > w(c(K)) and then wd(K) =
wd(K/c(K)). By Claim 4.10 applied to K/c(K) there exists a continuous surjective
homomorphism of K/c(K) onto the w-divisible product

∏
i∈I Ki such that |I| = κ. It

remains to take the composition K → K/c(K)→
∏
i∈I Ki.

To prove the opposite implication, suppose that there exists a continuous surjective
homomorphism of K onto a w-divisible product

∏
i∈I Ki. Then |I| > ω. Since the

divisible weight is monotone by Proposition 3.17, so wd(K) ≥ |I|.

Corollary 4.12. A compact abelian group K is w-divisible if and only if there exists a
continuous surjective homomorphism of K onto a w-divisible product

∏
i∈I Ki such that

|I| = w(K) > ω.

In Corollary 4.18 the following result can be improved, taking the Ki all equal.

Corollary 4.13. Let κ be an infinite cardinal. A compact abelian group K is non-κ-
singular if and only if there exists a continuous surjective homomorphism of K onto a
w-divisible product

∏
i∈I Ki, where |I| = wd(K) > κ.

Here is a corollary of Lemma 3.23 and Theorem 4.11. It is not used in our proofs, but
we give it in order to emphasize the analogy between w-divisible and connected/divisible
compact groups, since r0(K) = |K| = 2w(K) for every divisible compact abelian group
K [31].

Corollary 4.14. If K is a non-singular compact abelian group, then r0(K) = 2wd(K).
In particular r0(K) = 2w(K), whenever K is w-divisible.

Proof. Let σ = wd(K) and H = md(K)K. By Lemma 3.23 σ = w(H) and H is w-
divisible because wd(H) = w(H) = σ > ω since K is non-singular. By Theorem 4.11
there exists a continuous surjective homomorphism of H onto the w-divisible product∏
i∈I Ki with |I| = σ. By Fact 1.36 and since |Ki| = c, r0(Ki) = c. Consequently

r0(
∏
i∈I Ki) = 2σ and r0(H) ≥ 2σ. But |H| = 2σ and so r0(H) = 2σ. Hence r0(K) =

r0(H) = 2σ.

4.3 Projection onto w-divisible powers

As we do in Remark 4.9 for products, in the following remark we describe the cases
in which a singular compact abelian group admits a projection onto Sω, where S is
a metrizable compact non-torsion abelian group. As in Remark 4.9 wd(K) = ω is a
necessary condition to have these projection.

Remark 4.15. A singular compact non-torsion abelian group K admits a continuous
surjective homomorphism onto Sω for some metrizable compact non-torsion abelian
group S precisely when some of the following occurs:
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(a) there exists a continuous surjective homomorphism f : K → Tω if and only if
r0(K̂) = ω;

(b) for some p ∈ P, there exists a continuous surjective homomorphism f : K → Gωp if
and only if rp(pmK̂) = ω for every m ∈ N (i.e., wd((K/c(K))p) = ω);

(c) for π an infinite subset of P there exists a continuous surjective homomorphism
f : K → Sωπ if and only if rp(K̂) = ω for every p ∈ π.

Proof. Let X = K̂. Assume that K admits a continuous surjective homomorphism onto
Sω for some metrizable compact non-torsion abelian group S. By Fact 4.7 such a group
S admits as a quotient one of the following four groups: either T, or Gp, or Zp for some
p ∈ P, or Sπ for some infinite π ⊆ P.

(a) and (b) are proved in Remark 4.9.
(c) Suppose that there exists a continuous surjective homomorphismK → Sωπ . Equiv-

alently, by Pontryagin duality, X ⊇
⊕

p∈π Z(p)(ω). This means that rp(X) = ω for every
p ∈ π.

The following claim, which is used to prove Theorem 4.17, analyzes when it is possible
to project a totally disconnected compact abelian group onto a power of a metrizable
compact non-torsion abelian group.

Claim 4.16. Let K be a totally disconnected compact abelian group, κp = w(Kp) for
each p ∈ P and I an uncountable set of indices.

(a) If π ⊆ P and |I| ≤ κp for all p ∈ π, then there exists a continuous surjective
homomorphism f : K → SIπ.

(b) If wd(Kp) < |I| for all p ∈ P and there exists a continuous surjective homomor-
phism f : K → SI , where S is a metrizable compact non-torsion abelian group,
then |I| ≤ κp for all p ∈ π for some infinite π ⊆ P.

Proof. (a) For every p ∈ π the inequality |I| ≤ κp yields that κp is uncountable, so
w(Kp/pKp) = κp by Lemma 3.40. Hence Kp/pKp is isomorphic to Z(p)κp . Moreover,
there exists a continuous surjective homomorphism Z(p)κp → Z(p)I , since |I| ≤ κp.
Therefore there exists a continuous surjective homomorphism

K ∼=top

∏
p∈P

Kp →
∏
p∈π
Z(p)I ∼=top

(∏
p∈π
Z(p)

)I
= SIπ.

(b) Suppose that wd(Kp) < |I| for all p ∈ P and that there exists a continuous
surjective homomorphism f : K → SI , where S is a metrizable compact non-torsion
abelian group. Then S is totally disconnected and compact, so S ∼=top

∏
p∈P Sp by

Remark 1.44(b). Since wd(Kp) < |I| for all p ∈ P, it follows that Sp is torsion for all
p ∈ P. Indeed, if Sp were not torsion, since there exists the surjective homomorphism
fp = f �Kp : Kp → SIp by Remark 1.44(c), Proposition 3.17 would imply that wd(Kp) ≥
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wd(SIp) = |I|. Hence Sp is a bounded p-torsion group for every p ∈ P, being p-torsion
and compact and in view of Fact 1.36. Since S is non-torsion, Sp has to be non-trivial
for infinitely many p ∈ P, and so rp(S) = rp(Sp) > 0 for infinitely many p ∈ P. Let
p ∈ P be such that rp(Sp) > 0. By Pontryagin duality there exists a continuous injective
homomorphism

⊕
I Ŝp → K̂p. Since Sp is a bounded p-torsion abelian group, Ŝp is

a bounded p-torsion abelian group as well by Fact 1.42(b) and by Pontryagin duality.
Therefore rp(Ŝp) > 0 and it follows that rp(K̂p) ≥ |I|. Hence κp = w(Kp) ≥ |I|.

Theorem 4.17. A non-singular compact abelian group K admits a continuous surjective
homomorphism onto a w-divisible power Swd(K) precisely when some of the following
occurs:

(a) there exists a continuous surjective homomorphism f : K → Twd(K) if and only if
wd(K) = w(c(K));

(b) for some p ∈ P, there exists a continuous surjective homomorphism f : K →
Gwd(K)
p if and only if wd(K) = wd((K/c(K))p);

(c) if π is an infinite subset of {p ∈ P : p > md(K)}, then there exists a continuous
surjective homomorphism f : K → S

wd(K)
π if and only if wd(K) = w((K/c(K))p)

for every p ∈ π.

Moreover every compact abelian group K with cf(wd(K)) > ω admits a continuous sur-
jective homomorphism onto a w-divisible power Swd(K).

Proof. Assume that K admits a continuous surjective homomorphism onto a w-divisible
power Swd(K). By Fact 4.7 S, being a metrizable compact non-torsion abelian group,
admits as a quotient one of the following four groups: either T, or Gp, or Zp for some
p ∈ P, or Sπ for some infinite π ⊆ P.

Depending on which of these four cases occurs we have either (a) or (b) or (c).

(a) Assume that there exists a continuous surjective homomorphism f : K → Twd(K).
Then the restriction of f to the connected component c(K) gives rise to a surjective
continuous homomorphism f �c(K): c(K) → Twd(K). This yields w(c(K)) ≥ wd(K),
while the inequality wd(K) ≥ w(c(K)) is always available. This proves that wd(K) =
w(c(K)).

On the other hand, if wd(K) = w(c(K)), then there exists a surjective continuous
homomorphism K → Tw(c(K)) = Twd(K) by Fact 1.41.

(b) Assume that there exists a continuous surjective homomorphism f : K → Zwd(K)
p .

From wd(K) > ω, we conclude that Zwd(K)
p admits Gwd(K)

p as a quotient. So we can
suppose that there exists a continuous surjective homomorphism f : K → Gwd(K)

p for
some p ∈ P. Since Gwd(K)

p is totally disconnected, f(c(K)) = {0} and so f factorizes
through the projection K → K/c(K). This produces a continuous surjective homo-
morphism K/c(K) → Gwd(K)

p . By Remark 1.44(c) there exists a continuous surjective
homomorphism (K/c(K))p → Gwd(K)

p , hence wd(K) ≤ wd((K/c(K))p) by Proposition
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3.17. The other inequality is always available by Proposition 3.17 again. This proves
that wd(K) = wd((K/c(K))p).

On the other hand, if wd(K) = wd((K/c(K))p), then there exists a continuous sur-
jective homomorphism (K/c(K))p → Gwd(K)

p by Lemma 4.6. It remains to compose with
the canonical projections K → K/c(K)→ (K/c(K))p.

(c) Assume that there exists a continuous surjective homomorphism f : K → S
wd(K)
π .

Since for every p ∈ π there exists a continuous surjective homomorphism φp : Sπ →
Sπ/pSπ ∼= Z(p), we obtain a continuous surjective homomorphism fp : K → Z(p)wd(K).
Since every fp factorizes through the canonical projection K → (K/c(K))p (as noted in
the proof of (b)) applying Remark 1.44(c) we get a surjective continuous homomorphism
l : (K/c(K))p → Z(p)wd(K). This proves that w((K/c(K))p) ≥ wd(K) for every p ∈ π
by Proposition 3.17. The converse inequality holds, because by hypothesis for every
p ∈ π, p > md(K) and so md(K)(K/c(K))p = (K/c(K))p. Hence wp((K/c(K))p) ≤
w(md(K)(K/c(K))) ≤ wd(K) for every p ∈ π.

Assume that wd(K) = w((K/c(K))p) for every p ∈ π. Since in general wd(K) ≥
wd(K/c(K)) ≥ w((K/c(K))p) for every p ∈ π by Proposition 3.17, we obtain

wd(K/c(K)) = w((K/c(K))p) for every p ∈ π.

Apply Claim 4.16 to the totally disconnected compact abelian group K/c(K) to find a
continuous surjective homomorphism g : K/c(K)→ S

wd(K)
π . Then take the composition

of g with the canonical projection K → K/c(K).

To finish the proof we have to see that if K is a non-singular compact abelian group
such that there exists no continuous surjective homomorphism f : K → Swd(K), where
Swd(K) is a w-divisible power, then cf(wd(K)) = ω. By (a) wd(K) > w(c(K)) and
so wd(K) = wd(K/c(K)) by Lemma 3.21. By (b) and (c) wd(K) = wd(K/c(K)) >
wd((K/c(K))p) for all p ∈ P. In view of Lemma 3.47(b)

wd(K) = wd(K/c(K)) = ws(K/c(K)) = sup
p∈Π(K/c(K))

w((K/c(K))p).

This proves that cf(wd(K)) = ω.

The next result is Corollary D∗ of the introduction. It improves in some sense
Corollary 4.13 and gives exactly the condition needed for a crucial part of Theorem Bκ

of the introduction.

Corollary 4.18. Let κ be an infinite cardinal. A compact abelian group K is non-κ-
singular if and only if there exists a continuous surjective homomorphism of K onto a
w-divisible power Sκ

+
.

Proof. If there exists a continuous surjective homomorphism of K onto a w-divisible
power Sκ

+
, then wd(K) > κ by Lemma 3.17 and so K is non-κ-singular.

Suppose that K is non-κ-singular. We have to consider two cases. If there exists a
continuous surjective homomorphism of K onto a w-divisible power Swd(K), we are done
since wd(K) ≥ κ+.
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Assume that such a homomorphism is not available. By Theorem 4.17 this means
that cf(wd(K)) = ω and wd(K) > w(c(K)). The condition cf(wd(K)) = ω, together with
wd(K) > κ, implies wd(K) > κ+. The condition wd(K) > w(c(K)) implies wd(K) =
wd(K/c(K)) by Lemma 3.21. So assume without loss of generality that K is totally
disconnected. According to Theorem 4.17 our hypothesis yields wd(K) > wd(Kp) for all
p ∈ P. By Lemma 3.47(b) wd(K) = ws(K) = supp∈Π(K)w(Kp). Since Π(K) is infinite,
either Π(K) = π∗(K) is infinite or π(K) is infinite. In both cases w(Kp) ≥ κ+ for
infinitely many p ∈ P. By Claim 4.16 there exists a continuous surjective homomorphism
K → Sκ

+
.

4.4 The non-abelian case

The connected compact groups behaves “nicely” even in the non-abelian case. Indeed in
[68] it is proved that if K is a connected compact group, then K/Z(K) is topologically
isomorphic to a product of metrizable groups. This result was improved in the next one.
A Lie group is a topological group locally homeomorphic to Rn for some n ∈ N+.

Theorem 4.19. [15, Theorem 4.2] If K is a non-trivial connected compact group, then
K/Z(K) is topologically isomorphic to

∏
i∈iKi, where each Ki is a non-trivial connected

compact non-abelian simple Lie group.
In particular there exists a continuous surjective homomorphism of K onto a product∏

i∈I Ki of non-trivial Lie groups with |I| = w(K).

The problem is open in general:

Problem 4.20. Does every compact group admit a continuous surjective homomorphism
onto a product of metrizable compact non-torsion groups?

Since the answer is positive for connected compact groups by Theorem 4.19, it is
convenient to consider first the opposite case:

Problem 4.21. Does every totally disconnected compact group admit a continuous sur-
jective homomorphism onto a product of metrizable compact non-torsion groups?
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Chapter 5

The free rank of abelian
pseudocompact groups

In [34] the authors proved the following theorem and left open in general the problem
of the admissibility of the free rank of a pseudocompact abelian group:

Theorem 5.1. [34, Theorem 3.21] If G is a non-trivial connected pseudocompact abelian
group, then Ps(r0(G), w(G)) holds.

In particular this implies that Ps(r0(G)) holds, i.e., r0(G) is admissible, for every
non-trivial connected pseudocompact abelian group.

Problem 5.2. [34, Problem 9.11] Is Ps(r0(G)) a necessary condition for the existence
of a pseudocompact group topology on a non-torsion abelian group G?

As mentioned in [34] this problem seems to be important for the characterization of
the abelian groups admitting pseudocompact group topologies [34, Problem 0.2].

In this chapter, in Theorem 5.13 we prove the counterpart of Theorem 5.1 weakening
the hypothesis from connected to w-divisible. Furthermore we answer positively to
Problem 5.2 in Corollary 5.18.

5.1 Measuring dense pseudocompact subgroups

In the introduction we have defined Ps(λ, κ) for cardinals λ, κ with κ infinite. For a
given infinite cardinal λ, the set

Aλ = {κ infinite cardinal : Ps(λ, κ) holds}

is not empty because 2λ ∈ Aλ. Then, for the properties of cardinal numbers, Aλ admits
a minimal element. So we can give the definition of the cardinal function m(−), which
is strictly related to Ps(−,−).

Definition 5.3. [34, Definition 2.6] Let κ be an infinite cardinal. Then m(κ) is the
minimal cardinal λ such that Ps(λ, κ) holds.

65
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This cardinal function was defined in [15] in terms of compact groups: if K is a
compact group of weight κ, then m(κ) denotes the minimum cardinality of a dense
pseudocompact subgroup of K. The function m(−) is defined as a function of the
weight because it depends only on it [15]. A consequence of this fact, of Theorem 2.7
and of the following theorem is that these two definitions of m(−) are equivalent.

Theorem 5.4. [15] (see also [34, Fact 2.12 and Theorem 3.3(i)]) Let λ and κ ≥ ω be
cardinals. Then Ps(λ, κ) holds if and only if there exists a group G of cardinality λ which
admits a pseudocompact group topology of weight κ.

Fact 5.5. [6] (see also [15, Theorem 2.7]) Let κ be an infinite cardinal. Then:

(a) m(κ) ≥ 2ω and cf(m(K)) > ω;

(b) log(κ) ≤ m(κ) ≤ (log κ)ω.

Some useful properties of the condition Ps(λ, κ) are collected in the next proposition;
(a) and (b) are part of [34, Lemma 2.7] and (d) is a particular case of [34, Lemma 3.4(i)].

Proposition 5.6. (a) Ps(c, ω) holds and moreover m(ω) = c.

(b) If Ps(λ, κ) holds for some cardinals λ, κ ≥ ω, then Ps(λ′, κ) holds for every cardinal
λ′ such that λ ≤ λ′ ≤ 2κ.

(c) For cardinals λ, κ ≥ ω, Ps(λ, κ) holds if and only if m(κ) ≤ λ ≤ 2κ.

(d) Ps
(
2κ, 22κ

)
holds for every infinite cardinal κ.

Proof. (a) For the first part it suffices to note that {0, 1}ω has cardinality c. (Using
Theorem 5.4, for example T is metrizable and has cardinality c.) For the second part we
need to observe that every ω-dense subset S of {0, 1}ω has to coincide with {0, 1}ω and
in particular |S| = c.

(b) If F is an ω-dense subset of {0, 1}κ of cardinality λ, then every subset F ′ of
{0, 1}κ such that F ⊆ F ′ and F ′ is ω-dense in {0, 1}κ. Moreover the cardinality of F ′

cannot be bigger than |{0, 1}κ| = 2κ.

(c) Suppose that Ps(λ, κ) holds for some cardinals λ, κ ≥ ω. Then λ ≥ m(κ) by the
definition of m(−). Moreover a subset of {0, 1}κ cannot have size bigger that 2κ and
so λ ≤ 2κ. Conversely, suppose that m(κ) ≤ λ ≤ 2κ for some cardinals λ, κ ≥ ω. The
Ps(λ, κ) holds, because Ps(m(κ), κ) holds and so it is possible to apply (b).

(d) Since log 22κ ≤ 2κ and by Fact 5.5(a),

m
(
22κ
)
≤
(
log 22κ

)ω ≤ (2κ)ω = 2κ.

Consequently m(22κ) ≤ 2κ ≤ 22κ and hence Ps
(
2κ, 22κ

)
holds by (b).

We give some results about m(−) concerning cardinals κ for which it is possible that
m(κ) < 2κ.
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Lemma 5.7. If κ is a cardinal of countable cofinality such that 2<κ < 2κ, then m(κ) = 2κ

implies that κ is a strong limit.

Proof. Suppose that κ is not a strong limit. We prove that m(κ) < 2κ. Since κ has
countable cofinality, there exists an increasing sequence {κn}n∈N of cardinals such that
κ = supn∈N κn and κn < κ for every n ∈ N. By Claim 1.3 there exists n ∈ N such that
2κn ≥ κ. Hence log κ ≤ κn. Therefore

(log κ)ω ≤ κωn ≤ 2κn ≤ 2<κ.

By Fact 5.5(a) m(κ) ≤ (log κ)ω and so m(κ) ≤ 2<κ. Finally 2<κ < 2κ by hypothesis.

Corollary 5.8. Let K be a compact abelian group such that w(K) = κ is an infinite
cardinal of countable cofinality and 2<κ < 2κ. Then K admits a small dense pseudo-
compact subgroup D whenever κ is not a strong limit. In such a case D can be chosen
of size any κ with 2<κ ≤ λ < 2κ.

Proof. The first statement is a direct consequence of Lemma 5.7. For the second part
it is sufficient to prove that m(κ) ≤ 2<κ. Since cf(κ) = ω, κ > ω and there exists an
increasing sequence of infinite cardinals {κn}n∈N such that κ = supn∈N κn and κn < κ.
Since κ is not a strong limit, there exists n ∈ N such that 2κn ≥ κ and so κn ≥ log κ. By
Fact 5.5(a) m(κ) ≤ (log κ)ω. Therefore m(κ) ≤ (κn)ω ≤ 2κn . Hence m(κ) ≤ 2<κ.

Since under GCH every limit cardinal is a strong limit, the following are consequences
of Lemma 5.7.

Corollary 5.9. Under GCH, if κ is an infinite cardinal of countable cofinality such that
2<κ < 2κ, then m(κ) = 2κ.

Proof. Since cf(κ) = ω, κ is a limit cardinal and then κ is a strong limit because we
are assuming GCH. Then log κ = κ by Claim 1.3. By Fact 5.5 m(κ) ≥ log κ and m(κ)
cannot have countable cofinality. So m(κ) > κ and hence m(κ) = κ+ = 2κ.

The following is a direct consequence of Corollary 5.9.

Corollary 5.10. Under GCH a compact abelian group K such that w(K) = κ is an infi-
nite cardinal of countable cofinality and 2<κ < 2κ admits no small dense pseudocompact
subgroup.

Remark 5.11. Under GCH every limit cardinal is a strong limit and so the opposite
implication of Lemma 5.7 holds as shown by Corollary 5.9, but it does not hold in
general. In fact in [47] Gitik and Shelah showed that it is possible that there exists a
strong limit cardinal κ with cf(κ) = ω and m(κ) = κ+ < 2κ.
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5.2 The case of w-divisible pseudocompact abelian groups

It is immediate to weaken the hypothesis of Theorem 5.1 from connected to almost
connected:

Corollary 5.12. If G is a non-trivial almost connected pseudocompact abelian group,
then Ps(r0(G), w(G)) holds.

Proof. Since c(G) ∈ Λ(G), by Corollary 2.21(b,d) with κ = ω, c(G) is a non-trivial
connected pseudocompact abelian group such that w(c(G)) = w(G). By Theorem 5.1
Ps(r0(c(G)), w(c(G))) holds. Consequently it remains to prove that r0(c(G)) = r0(G).
This holds because r0(G) = r0(c(G))+r0(G/c(G)) by Lemma 1.7, where r0(c(G)) ≥ c by
Fact 1.36 and, since G/c(G) is metrizable by Theorem 2.20, r0(G/c(G)) ≤ |G/c(G)| ≤
c.

One can ask also whether connectedness is a necessary condition in order that
Ps(r0(G), w(G)) holds for a pseudocompact abelian group G. Using a technique similar
to that of the proof of Theorem 5.1 and applying Theorem 4.11 we prove the follow-
ing result, that generalizes Theorem 5.1 to w-divisible pseudocompact abelian groups,
which are far from being connected (while connected pseudocompact abelian groups are
w-divisible). This result is Theorem E of the introduction.

Theorem 5.13. If G is a w-divisible pseudocompact abelian group, then Ps(r0(G), w(G))
holds.

Proof. Let w(G) = κ > ω and K = G̃. Then K is a w-divisible compact abelian group of
weight κ in view of Lemma 3.27. By Theorem 4.11 there exists a continuous surjective
homomorphism f : K →

∏
i∈I Ki, where

∏
i∈I Ki is a w-divisible product of weight

|I| = κ > ω. By Fact 1.36 r0(K) ≥ c.
Let ϕ :

∏
i∈I Ki →

∏
i∈I Ki/t(Ki) be the product of the canonical projections Ki →

Ki/t(Ki) . For A ⊆ I let

ϕA = ϕ �∏
i∈AKi

:
∏
i∈A

Ki →
∏
i∈A

Ki/t(Ki).

Moreover

πA :
∏
i∈I

Ki →
∏
i∈A

Ki and π̄A :
∏
i∈I

Ki/t(Ki)→
∏
i∈A

Ki/t(Ki)

are the canonical projections. Let

H = f(G) ⊆
∏
i∈I

Ki and H̄ = ϕ(H) ⊆
∏
i∈I

Ki/t(Ki),

while
i : H →

∏
i∈I

Ki and ī : H̄ →
∏
i∈I

Ki/t(Ki)
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are the inclusion maps. Finally ϕ̃ = ϕ �H : H → H̄.
Let i ∈ I. Then |Ki/t(Ki)| = c, because Ki/t(Ki) is torsion free, Ki is metrizable

compact non-torsion and r0(Ki/t(Ki)) = r0(Ki) = c by Fact 1.36. Then there exists a
bijection ξi : Ki/t(Ki)→ X, where X is a set of cardinality c. Consequently

ξ =
∏
i∈I

ξi :
∏
i∈I

Ki/t(Ki)→ XI ∼= Xκ,

defined by ξ((ki)i∈I) = (ξi(ki))i∈I for every (ki)i∈I ∈
∏
i∈I Ki/t(Ki), is a bijection.

Define ¯̄H = ξ(H̄) and ξ̃ = ξ �H̄ : H̄ → ¯̄H, let ¯̄i : ¯̄H → XI be the inclusion map and
¯̄πA : XI → XA the canonical projection. Moreover let

χ̃ = ξ̃ ◦ ϕ̃, ξA = ξ �∏
i∈AKi/t(Ki)

and χA = ξA ◦ ϕA

and define
ωA = πA ◦ i and ¯̄ωA = ¯̄πA ◦ ¯̄i.

This gives the following commutative diagram:

H
� � i //

ϕ̃

��
χ̃

��

ωA

++∏
i∈I Ki

πA // //

ϕ

��

∏
i∈AKi

ϕA

��
χA

yy

H̄
� � ī //

ξ̃

��

∏
i∈I Ki/t(Ki)

π̄A // //

ξ

��

∏
i∈AKi/t(Ki)

ξA

��
¯̄H

� � ¯̄i //
¯̄ωA

33XI
¯̄πA // // XA

(5.1)

We want to prove that

Ps
(
|H̄|, κ

)
holds.

To this aim we prove that ¯̄H = ξ(H̄) is ω-dense in XI .
Let A be a countable subset of I. Since G is a dense pseudocompact subgroup

of K, H is a dense pseudocompact subgroup of
∏
i∈AKi by Fact 2.6(a,c). Therefore

ωA : H →
∏
i∈AKi is surjective. In fact each Ki is metrizable, so

∏
i∈AKi is metrizable

as well; since ωA(H) is a pseudocompact subgroup of the metrizable group
∏
i∈AKi, it

is compact; being also dense, it coincides with
∏
i∈AKi. Also χA :

∏
i∈AKi → XA is a

surjection and so χA ◦ ωA is surjective as well. But

χA ◦ ωA = ¯̄ωA ◦ χ̃

and hence ¯̄ωA◦χ̃ is surjective; thus ¯̄ωA is surjective too. Since A is an arbitrary countable
subset of I, this proves that ¯̄H is ω-dense in XI . Therefore | ¯̄H| > ω. Since ξ is a bijection,
|H̄| = | ¯̄H| > ω. This yields that Ps

(
|H̄|, κ

)
holds.
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Since there exists a surjective homomorphism of G onto H̄, r0(G) ≥ r0(H̄) = |H̄|.
(The last equality is due to | ¯̄H| = |H̄| > ω and the fact that H̄ is torsion free as a
subgroup of the the torsion free group

∏
i∈I Ki/t(Ki).) Moreover r0(G) ≤ |K| = 2κ.

Since Ps
(
|H̄|, κ

)
holds, Ps(r0(G), κ) holds as well by Proposition 5.6(b).

Lemma 5.14. Let G be a non-singular pseudocompact abelian group. If Ps(r0(G), w(G))
holds, then w(G) ≤ 22wd(G)

.

Proof. To begin with, by Proposition 5.6(b) Ps(r0(G), w(G)) yields

w(G) ≤ 2r0(G). (5.2)

By Lemma 3.23 there exists a pseudocompact subgroup H of G such that w(H) =
wd(H) = wd(G) and r0(H) = r0(G). Since G is non-singular, wd(H) = w(H) > ω and so
H is w-divisible. In view of Theorem 5.13 Ps(r0(H), w(H)) holds and so r0(H) ≤ 2w(H),
that is

r0(G) ≤ 2wd(G). (5.3)

Equations (5.2) and (5.3) together give w(G) ≤ 22wd(G)
.

The upper bound given by this lemma can be reached for singular groups: the
following example furnishes an example of a singular pseudocompact abelian group G
for which Ps(r0(G), w(G)) and w(G) = 22wd(G)

hold.

Example 5.15. For every infinite cardinal κ there exists a compact abelian group Hκ

such that:

• r0(Hκ) = 2κ;

• wd(Hκ) = κ;

• w(Hκ) = 22κ ;

• Ps(r0(Hκ), w(Hκ)) holds.

The group Hκ = {0, 1}2κ × Tκ has the requested properties. Indeed Ps(r0(Hκ), w(Hκ))
is Ps(2κ, 22κ), which holds by Proposition 5.6(d).

Every Hκ is not w-divisible and Hω is singular.

This example shows also that the converse implication of Theorem 5.13 does not hold.
This means that w-divisibility (and so also connectedness) is not a necessary condition
in order that Ps(r0(G), w(G)) holds for a pseudocompact abelian group G. Nevertheless,
we have the following:

Corollary 5.16. For an infinite abelian group G and a cardinal κ > ω the following
conditions are equivalent:

(a) G admits a connected pseudocompact group topology of weight κ;



5.3. THE GENERAL CASE 71

(b) G admits a w-divisible pseudocompact group topology of weight κ;

(c) Ps(r0(G), κ) and |G| ≤ 2κ hold.

Proof. (a)⇔(c) is proved in [34, Theorem 7.1], (a)⇒(b) is obvious and (b)⇒(c) follows
from Theorem 5.13.

In this corollary we suppose that κ is uncountable, otherwise condition (b) makes
no sense, in view of the definition of w-divisible abelian group. But conditions (a) and
(c) can be considered also for κ = ω: (a) becomes G admits a metrizable connected
compact group topology, so in particular r0(G) = |G| = c by Fact 1.36, while (b)
becomes equivalent to r0(G) = c. In fact Ps(r0(G), ω) and |G| ≤ 2ω hold if and only if
c = m(ω) ≤ r0(G) ≤ |G| ≤ c, that is r0(G) = c, in view of Proposition 5.6(a,c). So in
the countable case (a)⇒(c). But the converse implication does not hold true: the group
G = Zω does not admit any connected compact group topology of weight ω being not
divisible, while it has r0(G) = c. More in general G admits no compact group topology
at all [35, Example 13.3].

5.3 The general case

The following result can be easily deduced from Theorem 5.13. An alternative way to
prove it is adopted in [34].

Theorem 5.17. The condition Ps(r0(G), wd(G)) holds, whenever G is a pseudocompact
non-torsion abelian group.

Proof. By Lemma 3.23 there exists a pseudocompact subgroup H of G such that w(H) =
wd(H) = wd(G) and r0(H) = r0(G). If G is non-singular then H is w-divisible and
Theorem 5.13 applies to H to conclude that Ps(r0(G), wd(G)) holds. If G is singular,
by Lemma 3.34 with κ = ω there exists m ∈ N+ such that w(mG) ≤ ω, so mG is
compact; therefore r0(G) = r0(mG) ≤ |mG| ≤ c. Since G is non-torsion, r0(G) ≥ c by
Fact 1.36. Hence r0(G) = c and wd(G) = ω because G is non-torsion. By Proposition
5.6(a) Ps(c, ω) holds.

The following immediate corollary of Theorem 5.17 is precisely the answer to Problem
5.2.

Corollary 5.18. If G is a pseudocompact non-torsion abelian group, then Ps(r0(G))
holds.

In Corollary 5.16 we considered the problem of the characterization of the abelian
groups admitting pseudocompact group topologies in the case of w-divisible topologies,
which go closer to connected ones. We conclude with the case of singular topologies,
which are closer to the “opposite end”, namely the torsion pseudocompact groups (that
are always totally disconnected). Here we offer only the following:
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Conjecture 5.19. For an infinite abelian group G the following conditions are equiva-
lent:

(a) G admits a singular pseudocompact group topology;

(b) there exists m ∈ N+ such that G[m] admits a pseudocompact group topology and
mG admits a metrizable compact group topology.

If the conjecture was true, this case could be reduced to those of pseudocompact
group topologies on torsion abelian groups (G[m]) and of metrizable compact group
topologies on abelian groups (mG). In [34, §6] is given a clear criterion of when a
torsion abelian group admits a pseudocompact group topology, while in [35] the groups
which admit a metrizable compact group topology are well characterized.

We intend to study whether the results of this chapter can be extended to κ-
pseudocompact abelian groups. The first step is to have a better knowledge of the
structure of κ-pseudocompact abelian groups, which seem to have properties similar to
those of pseudocompact groups — for instance see Theorem 2.12. Apparently here the
counterparts of Ps(−,−) and Ps(−) are needed for every infinite cardinal κ.



Chapter 6

Extremality

As we have done in the introduction for s- and r-extremality (see Definition 8), we gen-
eralize for an infinite cardinal κ the definitions of the other different levels of extremality
given in [29] for pseudocmpact groups (for κ = ω we find exactly the definitions of d-,
c- and weakly-extremal group).

Definition 6.1. Let κ be an infinite cardinal. A topological group G is:

• dκ-extremal if G/D is divisible for every dense κ-pseudocompact subgroup D of G;

• cκ-extremal if r0(G/D) < 2κ for every dense κ-pseudocompact subgroup D of G;

• κ-extremal if it is both dκ- and cκ-extremal.

If λ ≤ κ are infinite cardinals, then sλ- (respectively, rλ-, dλ-, cλ-, λ-) extremality
yields sκ- (respectively, rκ-, dκ-, cκ-, κ-) extremality. Immediate examples of dκ- and
cκ-extremal groups are divisible and torsion topological groups respectively.

In the following diagram we give an idea of the relations among these levels of ex-
tremality for κ-pseudocompact abelian groups. The non-obvious implications in the
diagram are proved in Proposition 6.6, Theorem 6.13 and Lemma 6.21.

w(G) ≤ κ

#+PPPPPPPPPPP

PPPPPPPPPPP

s{ nnnnnnnnnnn

nnnnnnnnnnn

��

sκ-extremal

#+PPPPPPPPPPPP

PPPPPPPPPPPP
rκ-extremal

s{ nnnnnnnnnnnn

nnnnnnnnnnnn

κ-extremal

#+PPPPPPPPPPPP

PPPPPPPPPPPP

s{ nnnnnnnnnnnn

nnnnnnnnnnnn
κ-singular

s{ nnnnnnnnnnn

nnnnnnnnnnn

dκ-extremal cκ-extremal

(6.1)

The obvious symmetry of this diagram is “violated” by κ-singularity; but Corollary
6.4 shows that it is equivalent to cκ-extremality.

73



74 CHAPTER 6. EXTREMALITY

The main theorem of this chapter, from which Theorem Aκ of the introduction
immediately follows, shows that four of the remaining properties in the diagram coincide:

Theorem 6.2. Let κ be an infinite cardinal. For a κ-pseudocompact abelian group G
the following conditions are equivalent:

(a) G is κ-extremal;

(b) G is either sκ- or rκ-extremal;

(c) w(G) ≤ κ.

As the proof of Theorem 6.2 does not make use of Theorem A of the introduction,
in this way we obtain also a completely self-contained proof of that theorem.

Example 6.25 shows that in general dκ- and cκ-extremality do not coincide with the
other levels of extremality.

To prove Theorem 6.2 we show in Theorem 6.10 that cκ-extremal κ-pseudocompact
abelian groups have “small” free rank. Moreover Theorem 6.20 proves Theorem 6.2 in
the torsion case. Then, as a consequence of Corollary 4.18, we have that for compact
abelian groups κ-singularity is equivalent to cκ-extremality and to a third property of a
completely different nature:

Theorem 6.3. Let κ be an infinite cardinal. For a compact abelian group K the following
conditions are equivalent:

(a) K is cκ-extremal;

(b) K is κ-singular;

(c) there exists no continuous surjective homomorphism of K onto a w-divisible power
SI with |I| > κ.

Using (c) we prove in Proposition 6.22 that the free rank of non-κ-singular κ-
pseudocompact abelian groups is “large”. This allows us to extend the equivalence
of (a) and (b) to the more general case of κ-pseudocompact groups:

Corollary 6.4. Let κ be an infinite cardinal. Every κ-pseudocompact abelian group is
cκ-extremal if and only if it is κ-singular.

The last stage in the proof of Theorem 6.2 is to show that every κ-singular κ-extremal
group has weight ≤ κ, applying the torsion case of the theorem, that is Theorem 6.20.

6.1 First results

The next proposition shows the stability under taking quotients of dκ- and cκ-extremality
for κ-pseudocompact abelian groups.
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Proposition 6.5. Let κ be an infinite cardinal. Let G be a κ-pseudocompact abelian
group and let L be a closed subgroup of G. If G is dκ- (respectively, cκ-) extremal, then
G/L is dκ- (respectively, cκ-) extremal.

Proof. Let π : G→ G/L be the canonical projection. If D is a dense κ-pseudocompact
subgroup of G/L, by Lemmas 1.22(a) and 2.23(b) π−1(D) is a dense κ-pseudocompact
subgroup of G. Moreover G/π−1(D) ∼= (G/L)/D.

Suppose that G/L is not dκ-extremal. Then there exists a dense κ-pseudocompact
subgroup D of G/L such that (G/L)/D is not divisible. Therefore G/π−1(D) is not
divisible, hence G is not dκ-extremal. If G/L is not cκ-extremal. Then there exists a
dense κ-pseudocompact subgroup D of G/L such that r0((G/L)/D) ≥ 2κ. Consequently
r0(G/π−1(D)) ≥ 2κ, so G is not cκ-extremal.

In this proposition we consider only dκ- and cκ-extremality. Indeed Theorem 6.2 and
Example 6.25 prove that, for κ-pseudocompact abelian groups, these are the only levels
of extremality that are not equivalent to having weight ≤ κ.

The next proposition covers the implication (c)⇒(b) of Theorem 6.2, even for non-
necessarily abelian groups.

Proposition 6.6. Let κ be an infinite cardinal and let (G, τ) be a compact group of
weight ≤ κ. Then (G, τ) is sκ- and rκ-extremal.

Proof. First we prove that (G, τ) is sκ-extremal. Let D be a dense κ-pseudocompact
subgroup of (G, τ). Then w(D) ≤ κ and so D is compact. So D is closed in (G, τ) and
therefore D = G, because D is dense in (G, τ).

Now we prove that (G, τ) is rκ-extremal. Let τ ′ be a κ-pseudocompact group topology
on G such that τ ′ ≥ τ . Since ψ(G, τ) ≤ κ, it follows that also ψ(G, τ ′) ≤ κ. By Lemma
2.16 (G, τ ′) is compact. Then τ ′ = τ by Theorem 1.28.

6.2 Construction of Gκ-dense subgroups

The following lemma is a generalization to κ-pseudocompact abelian groups of [21,
Lemma 2.13]. The construction is very similar.

Lemma 6.7. Let κ be an infinite cardinal. Let G be a κ-pseudocompact abelian group
and G =

⋃
n∈NAn, where all An are subgroups of G. Then there exist n ∈ N and

N ∈ Λκ(G) such that An ∩N is Gκ-dense in N .

Proof. Since (G,Pκτ) is Baire by Theorem 2.28 and since G =
⋃
n∈NAn

Pκτ , there exists

n ∈ N such that IntPκτAn
Pκτ 6= ∅. The family {x + N : x ∈ G, N ∈ Λκ(G)} is a base

of Pκτ by Corollary 2.19; consequently there exist x ∈ G and N ∈ Λκ(G) such that
x+N ⊆ An

Pκτ . Since x+N is open and closed in Pκτ , then

An ∩ (x+N)
Pκτ = x+N,
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that is An ∩ (x+N) is Gκ-dense in x+N .
We can suppose without loss of generality that x ∈ An, because we can choose a ∈ An

such that a + N = x + N . In fact, since An ∩ (x + N) 6= ∅, because An ∩ (x + N) is
Gκ-dense in x+N , it follows that there exists a ∈ An∩ (x+N). In particular a ∈ x+N
and so a+N = x+N .

We can choose x = 0 because all An ≤ G: since An ∩ (x+N) is Gκ-dense in x+N ,
it follows that (An − x) ∩N is Gκ-dense in N and An − x = An since x ∈ An.

For κ = ω the next lemma is [13, Lemma 4.1(b)].

Lemma 6.8. Let κ be an infinite cardinal and let G be a κ-pseudocompact abelian group.
If N ∈ Λκ(G) and D is Gκ-dense in N , then there exists a subgroup E of G such that
|E| ≤ 2κ and D + E is Gκ-dense in G.

Proof. Since D is Gκ-dense in N ∈ Λκ(G), it follows that x + D is Gκ-dense in x + N
for every x ∈ G. By Theorem 2.20 G/N is compact of weight κ and so |G/N | ≤ 2κ, i.e.,
there exists X ⊆ G with |X| ≤ 2κ such that G/N = {x+N : x ∈ X}. We set E = 〈X〉;
then |E| ≤ 2κ and D + E is Gκ-dense in G.

Lemmas 6.7 and 6.8 imply that in case G is a κ-pseudocompact abelian group such
that G =

⋃
n∈NAn, where all An are subgroups of G, then there exist n ∈ N, N ∈ Λκ(G)

and E ≤ G with |E| ≤ 2κ such that (An ∩ N) + E is Gκ-dense in G. In particular we
have the following useful result.

Corollary 6.9. Let κ be an infinite cardinal. Let G be a κ-pseudocompact abelian group
such that G =

⋃
n∈NAn, where all An ≤ G. Then there exist n ∈ N and a subgroup E

of G such that |E| ≤ 2κ and An + E is Gκ-dense in G.

Thanks to the previous results we prove the following theorem, which gives a first
restriction for extremal κ-pseudocompact groups, that is the free rank cannot be too
big. The case κ = ω of this theorem is [29, Theorem 3.6]. That theorem was inspired
by [12, Theorem 5.10 (b)] and used ideas from the proof of [13, Proposition 4.4].

Theorem 6.10. Let κ be an infinite cardinal and let G be a κ-pseudocompact abelian
group. If G is cκ-extremal, then r0(G) ≤ 2κ.

Proof. Let S be a maximal independent subset of G. Then |S| = r0(G) and there exists
a partition S =

⋃
n∈N+

Sn such that |Sn| = r0(G) for each n ∈ N+. Let Un = 〈Sn〉,
Vn = U1⊕. . .⊕Un and An = {x ∈ G : n!x ∈ Vn} for every n ∈ N+. Then G =

⋃
n∈N+

An.
By Corollary 6.9 there exist n ∈ N+ and a subgroup E of G such that D = An + E is
Gκ-dense in G and |E| ≤ 2κ. Hence |E/(An ∩ E)| ≤ 2κ. Since D/An = (An + E)/An is
algebraically isomorphic to E/(An∩E), it follows that |D/An| ≤ |E| ≤ 2κ. Since G is cκ-
extremal, it follows that r0(G/D) < 2κ and so r0(G/An) ≤ 2κ because (G/An)/(D/An) is
algebraically isomorphic to G/D. On the other hand, r0(G/An) ≥ r0(G), as Un embeds
into G/An. Hence r0(G) ≤ 2κ.
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6.3 The dense graph theorem

For κ = ω the following is [29, Lemma 3.7].

Lemma 6.11. Let κ be an infinite cardinal. Let G be a topological abelian group and H
a compact abelian group with |H| > 1. Let h : G→ H be a homomorphism.

(a) If kerh is Gκ-dense in G and h(G) is Gκ-dense in H, then Γh is Gκ-dense in
G×H.

(b) Suppose that w(H) ≤ κ. Then kerh is Gκ-dense in G and h is surjective if and
only if Γh is Gκ-dense in G×H.

Proof. (a) Suppose that kerh is Gκ-dense in G and that h(G) is Gκ-dense in H. Every
non-empty Gκ-set of G×H contains a Gκ-set of G×H of the form W ×O, where W is
a non-empty Gκ-set of G and O is a non-empty Gκ-set of H. Since h(G) is Gκ-dense in
H, there exists z ∈ G such that y = h(z) ∈ O. Also z + kerh is Gκ-dense in G and so
W ∩ (z + kerh) 6= ∅. Consequently there exists x ∈W ∩ (z + kerh). From x ∈ z + kerh
it follows that x − z ∈ kerh. Therefore h(x − z) = 0 and so h(x) = h(z) = y. Since
x ∈W , it follows that (x, y) ∈ (W ×O) ∩ Γh. This proves that

(W ×O) ∩ Γh 6= ∅.

Hence Γh is Gκ-dense in G×H.

(b) One implication follows from (a).
Suppose that Γh is Gκ-dense in G ×H. Let W be a non-empty Gκ-set of G. Since

W×{0} is a Gκ-set of G×H, because w(H) = ψ(H) ≤ κ, it follows that Γh∩(W×{0}) 6=
∅. But

Γh ∩ (W × {0}) = (W ∩ kerh)× {0}

and so
W ∩ kerh 6= ∅.

This proves that kerh is Gκ-dense in G. Moreover consider the canonical projection
p2 : G × H → H. Then p2(Γh) = h(G) is Gκ-dense in H by Fact 2.6(b). Since
w(H) ≤ κ, it follows that h(G) = H, that is h is surjective.

From the hypothesis of this lemma that h(G) is Gκ-dense in H and H is not trivial,
it follows that kerh is proper in G.

The following theorem gives a necessary condition for a κ-pseudocompact group to
be either sκ- or rκ-extremal. We call it “dense graph theorem” because of the nature of
this necessary condition. Moreover it is the generalization to κ-pseudocompact groups
of [16, Theorem 4.1].

Theorem 6.12. Let κ be an infinite cardinal and let (G, τ) be a non-metrizable κ-
pseudocompact group such that there exists a homomorphism h : G → H where H is a
κ-pseudocompact abelian group with |H| > 1 and Γh is Gκ-dense in (G, τ)×H. Then:
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(a) there exists a κ-pseudocompact group topology τ ′ > τ on G such that w(G, τ ′) =
w(G, τ);

(b) there exists a proper Gκ-dense subgroup D of (G, τ) such that w(D) = w(G, τ).

Proof. We first prove that H can be chosen compact metrizable and that in such a case
h is surjective. There exists a continuous character χ : H → T such that χ(H) 6= {0}.
Let H ′ = χ(H) ⊆ T and h′ = χ ◦h. Then H ′ is compact and metrizable. So H ′ is either
T or Z(n) ≤ T for some integer n > 1. Since

idG × χ : (G, τ)×H → (G, τ)×H ′

is a continuous surjective homomorphism such that (idG × χ)(Γh) = Γh′ and Γh is Gκ-
dense in (G, τ) ×H, it follows that Γh′ is Gκ-dense in (G, τ) ×H ′ by Fact 2.6(b). Let
p2 : G×H ′ → H ′ be the canonical projection. Then p2(Γh′) = h′(G) is Gκ-dense in H ′

by Fact 2.6(b). Since H ′ is metrizable, h′(G) = H ′ and h′ is surjective.

(a) Since G is Gκ-dense in (̃G, τ) by Theorem 2.12 and since Γh is Gκ-dense in

(G, τ) × H, it follows that Γh is Gκ-dense in (̃G, τ) × H. Consequently Γh with the

topology inherited from (̃G, τ) × H is κ-pseudocompact in view of Corollary 2.14. As
in Remark 2.24 let τh be the coarsest group topology on G such that τh ≥ τ and h
is τh-continuous; then (G, τh) is homeomorphic to Γh and so it is κ-pseudocompact. If
τh = τ , then h is continuous and Theorem 1.20 yields that Γh is closed in (G, τ) ×H.
This is not possible because Γh is dense in (G, τ)×H by hypothesis. Hence τh 
 τ . By
hypothesis w(G, τ) > ω and since H is metrizable, then

w(G, τh) = w(Γh) = w((G, τ)×H) = w(G, τ) · w(H) = w(G, τ).

(b) Let D = kerh. By Lemma 6.11 D is Gκ-dense in (G, τ). Moreover D is proper
in G. Clearly w(D) = w(G, τ).

The next theorem shows that κ-extremality “puts together” sκ- and rκ-extremality.
It is the generalization to κ-pseudocompact abelian groups of [29, Theorem 3.12].

Theorem 6.13. Let κ be an infinite cardinal and let G be a κ-pseudocompact abelian
group which is either sκ- or rκ-extremal. Then G is κ-extremal.

Proof. Suppose looking for a contradiction that G is not κ-extremal. Then there exists
a dense κ-pseudocompact subgroup D of G such that either G/D is not divisible or
r0(G/D) ≥ 2κ. In both cases D has to be a proper dense κ-pseudocompact subgroup
of G. Then G is not sκ-extremal. We prove that G is not rκ-extremal as well. The
subgroup D is Gκ-dense in G by Corollary 2.14. Let π : G → G/D be the canonical
projection.

We build a surjective homomorphism h : G/D → H, where H is compact |H| > 1
and kerh is Gκ-dense in G. By assumption D is a Gκ-dense subgroup of G such that
either G/D is not divisible or r0(G/D) ≥ 2κ. In the first case G/D admits a non-trivial
finite quotient H, while in the second case we can find a surjective homomorphism
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G/D → T = H, in view of Fact 1.16, as |T| ≤ r0(G/D). Since kerh contains D in both
cases, kerh is Gκ-dense in G. Apply Theorem 6.12 and Corollary 2.14 to conclude that
G is not rκ-extremal.

The following proposition and lemma are the generalizations to the κ-pseudocompact
case of [16, Theorems 5.8 and 5.9] respectively. The ideas used in the proofs are similar.
The next claim is needed in the proofs of both.

Claim 6.14. Let p ∈ P, let G be an abelian group of exponent p and h : G→ Z(p) ≤ T
a continuous surjective homomorphism. Then Γh has index p in G× Z(p).

Proof. Consider ξ : G×Z(p)→ Z(p), defined by ξ(g, y) = h(g)−y for all (g, y) ∈ G×Z(p).
Then ξ is surjective and ker ξ = Γh. Therefore G × Z(p)/ ker ξ = G × Z(p)/Γh is
algebraically isomorphic to Z(p) and so they have the same cardinality p.

The following proposition shows that for κ-pseudocompact abelian groups of prime
exponent sκ-extremality is equivalent to rκ-extremality.

Proposition 6.15. Let κ be an infinite cardinal and let (G, τ) be a κ-pseudocompact
abelian group of exponent p ∈ P. Then the following conditions are equivalent:

(a) there exist a κ-pseudocompact abelian group H with |H| > 1 and a homomorphism
h : G→ H such that Γh is Gκ-dense in (G, τ)×H;

(b) (G, τ) is not sκ-extremal;

(c) (G, τ) is not rκ-extremal.

Proof. (a)⇒(b) and (a)⇒(c) follow from Theorem 6.12.
(b)⇒(c) Suppose that (G, τ) is not sκ-extremal. Then there exists a dense κ-

pseudocompact subgroup D of (G, τ). We can suppose without loss of generality that
D is maximal and so that |G/D| = p. Let τ ′ be the coarsest group topology such that

τ ′ ⊇ τ ∪ {x+D : x ∈ G}.

Since D 6∈ τ but D ∈ τ ′, so τ ′ > τ . Since (D, τ ′ �D) = (D, τ �D) and D is a κ-
pseudocompact subgroup of (G, τ), it follows that D is a κ-pseudocompact subgroup of
(G, τ ′). Hence (G, τ ′) is κ-pseudocompact by Lemma 2.15.

(c)⇒(a) Suppose that G is not rκ-extremal. Then there exists a κ-pseudocompact
group topology τ ′ on G such that τ ′ > τ . Since both topologies are precompact, there
exists an homomorphism h : G → T such that h is τ ′-continuous but not τ -continuous.
Note that h(G) 6= {0}. Being G of exponent p, so h(G) = Z(p) ≤ T. Let

H = Z(p).

Since h is not τ -continuous, by Theorem 1.20 Γh is not closed in (G, τ)×Z(p). Moreover
|(G, τ)×Z(p)/Γh| = p by Claim 6.14. Since Γh is a subgroup of index p in (G, τ)×Z(p)
and it is not closed, then Γh is dense in (G, τ)× Z(p).
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Endow G with the topology τh, that is the coarsest group topology on G such that
τh ≥ τ and h is τh-continuous (see Remark 2.24). Then (G, τh) is κ-pseudocompact,
because h is τ ′-continuous and so τh ≤ τ ′ and τ ′ is κ-pseudocompact. By Remark
2.24 Γh is homeomorphic to (G, τh) and so Γh is κ-pseudocompact. Since Γh is dense
and κ-pseudocompact in (G, τ) × Z(p), Corollary 2.14 yields that Γh is Gκ-dense in
(G, τ)× Z(p) = (G, τ)×H.

Lemma 6.16. Let κ be an infinite cardinal. Let (G, τ) be a κ-pseudocompact abelian
group of exponent p ∈ P such that (G, τ) is either sκ- or rκ-extremal. Then every
h ∈ Hom(G,T) is Pκτ -continuous (i.e., Hom(G,T) ⊆ ̂(G,Pκτ)).

Proof. If h ≡ 0, then h is Pκτ -continuous. Suppose that h 6≡ 0. Then h(G) = Z(p) ≤
T. Since G is either sκ- or rκ-extremal, by Proposition 6.15 Γh is not Gκ-dense in
(G, τ)× Z(p), that is Γh is not dense in

Pκ((G, τ)× Z(p)) = Pκ(G, τ)× PκZ(p) = (G,Pκτ)× Z(p).

Claim 6.14 implies that |G× Z(p)/Γh| = p. Since Γh is not dense and is of prime index
in (G,Pκτ) × Z(p), it follows that Γh is closed in (G,Pκτ) × Z(p). By Theorem 1.20 h
is Pκτ -continuous.

6.4 Torsion abelian groups and extremality

The following definition and two lemmas are the generalization to the κ-pseudocompact
case of [16, Notation 5.10, Theorem 5.11 and Lemma 5.13]. The constructions are almost
the same.

Definition 6.17. Let κ be an infinite cardinal, let X be a topological space and Y ⊆ X.
The κ-closure of Y in X is

κ-clX(Y ) =
⋃{

Y
X : A ⊆ Y, |A| ≤ κ

}
.

For Y ⊆ X, the set κ-clX(Y ) is κ-closed in X, i.e., κ-clX(κ-clX(Y )) = κ-clX(Y ).

Lemma 6.18. Let κ be an infinite cardinal. Let G be a κ-pseudocompact abelian group
and let h ∈ Hom(G,T). Then the following conditions are equivalent:

(a) h ∈ κ-clHom(G,T)Ĝ;

(b) there exists N ∈ Λκ(G) such that N ⊆ kerh.

Proof. (a)⇒(b) Suppose that h ∈ κ-clHom(G,T)Ĝ. Let A ⊆ Ĝ such that |A| ≤ κ and

h ∈ AHom(G,T). We set N =
⋂
{ker f : f ∈ A}. Then N ∈ Λκ(G). Moreover N ⊆ kerh

as h ∈ AHom(G,T).
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(b)⇒(a) Let N ∈ Λκ(G) and let π : G → G/N be the canonical projection. The
group G/N is compact of weight ≤ κ and so

|Ĝ/N | = w(G/N) ≤ κ

by Fact 1.40(c). We enumerate the elements of Ĝ/N as Ĝ/N = {χλ : λ < κ} and define

A = {χλ ◦ π : λ < κ} ≤ Ĝ.

We prove that h ∈ AHom(G,T). Suppose that h 6∈ AHom(G,T). Since A is a closed subgroup
of the compact group Hom(G,T), there exists ξ ∈ ̂Hom(G,T) such that ξ(h) 6= 0 and
ξ(f) = 0 for every f ∈ A. By Pontryagin duality there exists x ∈ G such that f(x) = ξ(f)
for every f ∈ Ĝ. Then

χλ(π(x)) = ξ(χλ ◦ π) = 0

for every χλ ∈ Ĝ/N . Then π(x) = x+N = N and so x ∈ N ⊆ kerh, i.e., h(x) = 0. But
h(x) = ξ(h) 6= 0, a contradiction.

Lemma 6.19. Let κ be an infinite cardinal. Let (G, τ) be a κ-pseudocompact abelian
group of exponent p ∈ P such that G is either sκ- or rκ-extremal and |G| = λ ≥ κ. Then
for the completion K of (G, τ):

(a) for every h ∈ Hom(G,T) there exists h′ ∈ Hom(K,T) such that h′ �G= h and h′ is
PκK-continuous;

(b) Hom(G,T) ⊆ κ-clHom(G,T)(̂G, τ);

(c) ψ(G, τ) ≤ κ · log λ.

Proof. (a) By Theorem 2.12 G is dense in PκK. By Lemma 6.16 every h ∈ Hom(G,T)
is Pκτ -continuous. Therefore h can be extended to h′ ∈ Hom(K,T), such that h′ is
PκK-continuous, because (G,Pκτ) is dense in PκK.

(b) Since h ∈ Hom(G,T), by (a) there exists h′ ∈ Hom(K,T) such that h′ �G= h
and h′ is PκK-continuous. By Lemma 6.18 h′ ∈ κ-clHom(K,T)K̂. Therefore

h ∈ κ-clHom(G,T)(̂G, τ).

Indeed, let A′ ⊆ K̂ be such that |A′| ≤ κ and h′ ∈ A′Hom(K,T). For f ′ ∈ A′ we set

f = f ′ �G∈ (̂G, τ) and A = {f ′ �G: f ′ ∈ A′}.

There exists a net {f ′λ}λ in A′ such that f ′λ → h′ in Hom(K,T); since the topology on
Hom(K,T) is the point-wise convergence topology, this means that f ′λ(x) → h′(x) for
every x ∈ K. Then fλ(x)→ h(x) for every x ∈ G. Hence fλ → h in Hom(G,T) and so

h ∈ AHom(G,T) ⊆ κ-clHom(G,T)(̂G, τ).
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(c) By Fact 1.40(a,c) d(Hom(G,T)) = logw(Hom(G,T)) ≤ log λ. Then there exists
a dense subset S of Hom(G,T) such that |S| ≤ log λ. By (b) for every h ∈ S there exists

A(h) ⊆ (̂G, τ) such that |A(h)| ≤ κ and h ∈ A(h)
Hom(G,T)

. Then A =
⋃
{A(h) : h ∈ S}

is dense in Hom(G,T), because S ⊆ AHom(G,T). Moreover

A ⊆ (̂G, τ) and |A| ≤ κ · log λ.

Let x ∈ G \ {0} and let {Vn : n ∈ N} be a local base at 0 of T. Since A is dense in
Hom(G,T), it separates the points of G and so there exists f ∈ A such that f(x) 6= 0.
Then there exists n ∈ N such that f(x) 6∈ Vn. Therefore

⋂
n∈N,f∈A f

−1(Vn) = {0} and
hence

ψ(G, τ) ≤ |A| ≤ κ · log λ,

that concludes the proof.

Now we prove Theorem 6.2 in the torsion case. For κ = ω it implies [16, Corollary
7.5] and the proof is inspired by this result. Since every torsion κ-pseudocompact group
is cκ-extremal, we observe that a torsion κ-pseudocompact abelian group is κ-extremal
if and only if it is dκ-extremal.

Theorem 6.20. Let κ be an infinite cardinal and let G be a κ-pseudocompact torsion
abelian group. Then G is κ-extremal if and only if w(G) ≤ κ.

Proof. If w(G) ≤ κ, then G is κ-extremal by Proposition 6.6 and Theorem 6.13.
Suppose that w(G) > κ. We prove that there exists p ∈ P such that w(G/pG) > κ.

Since G is torsion, then it is bounded torsion by Fact 1.36. Therefore K = G̃ is bounded
torsion and K ∼=top

∏
p∈P tp(K), where tp(K) 6= {0} for finitely many p ∈ P (see Remark

1.44(b)). Since
w(K) = max

p∈P
w(tp(K)) and w(K) = w(G) > κ,

there exists p ∈ P such that
w(tp(K)) > κ.

Moreover for this p we have w(tp(K)) = w(K(p)), where K(p) = tp(K)/ptp(K), by
Lemma 3.40(b). Consider the composition ϕp of the canonical projections K → tp(K)
and tp(K)→ K(p). Since G is dense in K, it follows that ϕp(G) is dense in K(p) by Fact
2.6(a) and so

w(ϕp(G)) = w(K(p)) > κ.

Moreover there exists a continuous isomorphism G/(kerϕp∩G)→ ϕp(G). Since kerϕp =
pK and pK ∩G = pG, there exists a continuous isomorphism G/pG→ ϕp(G). Hence

w
(
G/pG

)
≥ w(ϕp(G)) > κ.

Let G1 = G/pG. We prove that G1 is not sκ-extremal. Suppose for a contradiction
that G1 is sκ-extremal. By Lemma 6.16 every h ∈ Hom(G1,T) is Pκτ -continuous, and
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so PκG1 = PκG
#
1 by Lemma 2.26. By Theorem 2.28 PκG1 is Baire, hence |G1| ≤ 2κ by

Theorem 2.27. By Lemma 6.19(c)

ψ(G1) ≤ κ · log 2κ = κ

and so Lemma 2.16 implies
w(G1) = ψ(G1) ≤ κ;

this contradicts our assumption.
Then there exists a proper dense κ-pseudocompact subgroup D of G1. By Corollary

2.14 D is Gκ-dense in G1. Let π : G → G1 be the canonical projection. By Lemma
2.23(b) π−1(D) is a proper Gκ-dense subgroup of G, then dense κ-pseudocompact in G
by Corollary 2.14. Since G/π−1(D) is algebraically isomorphic to G1/D, it follows that
G/π−1(D) is of exponent p and hence not divisible. Therefore G is not dκ-extremal and
so not κ-extremal.

The following lemma proves one implication of Corollary 6.4 and it is the gener-
alization of Fact 3.1. This result holds for non-necessarily κ-pseudocompact abelian
groups.

Lemma 6.21. Let κ be an infinite cardinal and let G be a κ-singular abelian group.
Then r0(G/D) = 0 for every dense κ-pseudocompact subgroup D of G. In particular G
is cκ-extremal.

Proof. By definition there exists a positive integer m such that w(mG) ≤ κ. Let D be
a dense κ-pseudocompact subgroup of G. By Corollary 2.14 D is Gκ-dense in G. Since
mD is a Gκ-dense subgroup of mG by Fact 2.6(b) and w(mG) ≤ κ, so mD = mG.
Therefore mG ≤ D and hence the quotient G/D is bounded torsion. In particular
r0(G/D) = 0.

Proof of Theorem 6.3. (a)⇒(c) Suppose that there exists a continuous surjective ho-
momorphism ϕ of K onto a w-divisible power Sλ with λ > κ. Then ϕ is also open by
Theorem 1.28. Note that Sλ ∼=top (Sκ)λ. Let T = Sκ. Then D = ΣκT

λ is a Gκ-dense
subgroup of T λ, so dense κ-pseudocompact by Corollary 2.14, and D trivially intersects
∆T λ, which is topologically isomorphic to T = Sκ. Consequently

r0(T λ/D) ≥ 2κ.

Therefore T λ is not cκ-extremal and K is not cκ-extremal as well by Proposition 6.5.
(b)⇒(a) is Lemma 6.21 and (b)⇔(c) is Corollary 4.18.

6.5 Proof of the main theorem

Proposition 6.22. Let κ be an infinite cardinal. If G is a non-κ-singular κ-pseudo-
compact abelian group, then N is non-κ-singular and r0(N) = r0(G) ≥ 2κ for every
N ∈ Λκ(G).
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Proof. First we prove that r0(G) ≥ 2κ. Since G is non-κ-singular, then K = G̃ is non-
κ-singular as well by Lemma 3.34. By Theorem 6.3 there exists a continuous surjective
homomorphism ϕ : K → SI , where S is a metrizable compact non-torsion abelian group
and |I| > κ. Let J be a subset of I of cardinality κ and consider the composition φ of
ϕ with the canonical projection SI → SJ . The group SJ has weight κ and free rank 2κ.
Since G is Gκ-dense in K by Theorem 2.12, it follows that φ(G) is Gκ-dense in SJ by
Fact 2.6(b). Since w(SJ) ≤ κ, φ(G) = SJ is compact. Hence r0(G) ≥ 2κ.

Let N ∈ Λκ(G). Then N is κ-pseudocompact by Corollary 2.21(b). Since G is
non-κ-singular, so N is non-κ-singular by Lemma 3.37(a).

By the first part of the proof, r0(N) ≥ 2κ. By Theorem 2.20 w(G/N) ≤ κ and so
G/N is compact with |G/N | ≤ 2κ. Since r0(G) = r0(G/N) + r0(N) by Lemma 1.7, we
conclude that r0(G) = r0(N).

The next lemma shows that for κ-pseudocompact abelian groups cκ-extremality is
hereditary for κ-pseudocompact subgroups that are sufficiently large. This is the gener-
alization to κ-pseudocompact abelian groups of [29, Theorem 4.11].

Lemma 6.23. Let κ be an infinite cardinal and let G be a cκ-extremal κ-pseudocompact
abelian group. Then every κ-pseudocompact subgroup of G of index ≤ 2κ is cκ-extremal.
In particular, every N ∈ Λκ(G) is cκ-extremal.

Proof. Aiming for a contradiction, assume that there exists a κ-pseudocompact subgroup
N of G with |G/N | ≤ 2κ such that N is not cκ-extremal. Then there exists a dense
κ-pseudocompact subgroup D of N with r0(N/D) ≥ 2κ. Therefore |G/N | ≤ r0(N/D).
By [29, Corollary 4.9] there exists a subgroup L of G/D such that L + N/D = G/D
and r0((G/D)/L) ≥ r0(N/D). Let π : G→ G/D be the canonical projection and D1 =
π−1(L). Then N + D1 = G. Since D is Gκ-dense in N by Corollary 2.14, so D1

PκG ⊇
N + D1 = G and so D1 is Gκ-dense in G; equivalently D1 is dense κ-pseudocompact
in G by Corollary 2.14. Since G/D1 is algebraically isomorphic to (G/D)/L, it follows
that

r0(G/D1) = r0((G/D)/L) ≥ r0(N/D) ≥ 2κ.

We have produced a Gκ-dense (so dense κ-pseudocompact by Corollary 2.14) subgroup
D1 of G with r0(G/D1) ≥ 2κ, a contradiction.

If N ∈ Λκ(G) then w(G/N) ≤ κ by Theorem 2.20 and so G/N is compact. Hence
|G/N | ≤ 2κ. So N is cκ-extremal by the previous part of the proof.

Lemma 6.24. [22, Lemma 3.2] Let κ be an infinite cardinal and suppose that A is a
family of subsets of 2κ such that:

(1) for B ⊆ A with |B| ≤ κ,
⋂
B∈B B ∈ A and

(2) each element of A has cardinality 2κ.

Then there exists a countable infinite family B of subsets of 2κ such that:

(a) B1 ∩B2 = ∅ for every B1, B2 ∈ B and



6.5. PROOF OF THE MAIN THEOREM 85

(b) if A ∈ A and B ∈ B, then |A ∩B| = 2κ.

Now we can prove our main results.

Proof of Corollary 6.4. If G is κ-singular then G is cκ-extremal by Lemma 6.21.
Suppose that G is cκ-extremal and assume for a contradiction that G not κ-singular.

By Theorem 6.10 r0(G) ≤ 2κ and by Proposition 6.22 r0(G) ≥ 2κ. Hence r0(G) = 2κ.
Let D(G1) = Q(S), with |S| = 2κ, be the divisible hull of the torsion free quotient
G1 = G/t(G). Let π : G → D(G1) be the composition of the canonical projection
G→ G1 and the inclusion map G1 → D(G1).

For a subset A of S let

G(A) = π−1
(
Q(A)

)
and A = {A ⊆ S : G(A) ⊇ N ∈ Λκ(G)}.

Then A has the property that for B ⊆ A such that |B| ≤ κ,
⋂
B∈B B ∈ A; and |A| = 2κ

for all A ∈ A, as r0(N) = 2κ for every N ∈ Λκ(G) by Proposition 6.22 and r0(G) = 2κ.
By Lemma 6.24 there exists a partition {Pn}n∈N of S such that |A ∩ Pn| = 2κ for every
A ∈ A and for every n ∈ N. Define

Vn = G(P0 ∪ . . . ∪ Pn)

for every n ∈ N and note that G =
⋃
n∈N Vn. By Lemma 6.7 there exist m ∈ N and

N ∈ Λκ(G) such that D = Vm ∩ N is Gκ-dense in N , so dense κ-pseudocompact in
N by Corollary 2.14. By Lemma 6.23 to get a contradiction it suffices to show that
r0(N/D) = 2κ.

Let F be a torsion free subgroup of N such that F ∩ D = {0} and maximal with
this property. Suppose for a contradiction that |F | = r0(N/D) < 2κ. So π(F ) ⊆ Q(S1)

for some S1 ⊆ S with |S1| < 2κ and W = P0 ∪ . . . ∪ Pm ∪ S1 has |W ∩ Pm+1| < 2κ.
Consequently W 6∈ A and so N 6⊆ G(W ). Take x ∈ N \G(W ). Since G/G(W ) is torsion
free,

〈x〉 ∩G(W ) = {0}

and x has infinite order. But D + F ⊆ G(W ) and so 〈x〉 ∩ (D + F ) = {0}, that is

(F + 〈x〉) ∩D = {0}.

This contradicts the maximality of F .

Proof of Theorem 6.2. (a)⇒(c) If G is κ-extremal, in particular it is cκ-extremal and
so κ-singular by Corollary 6.4.

Suppose that w(G) > κ. Since G is κ-singular, by Lemma 3.34 there exists m ∈ N+

such that w(mG) ≤ κ; in particular mG is compact and so closed in G. Since w(mG) ≤ κ
and w(G) = w(G/mG) ·w(mG), it follows that w(G/mG) = w(G) > κ. Then G/mG is
not κ-extremal by Theorem 6.20 and so G is not κ-extremal by Proposition 6.5.

(c)⇒(b) is Proposition 6.6 and (b)⇒(a) is Theorem 6.13.
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The following example shows that dκ- and cκ-extremality cannot be equivalent con-
ditions in Theorem 6.2. Item (a) shows that κ-singular κ-pseudocompact abelian groups
need not be dκ-extremal and also that there exists a cκ-extremal (non-compact) κ-
pseudocompact abelian group of weight> κ, which is not dκ-extremal. It is the analogous
of [29, Example 4.4]. In item (b) we give an example of a non-cκ-extremal dκ-extremal
κ-pseudocompact abelian group of weight > κ.

Example 6.25. Let κ be an infinite cardinal.

(a) Let p ∈ P and let G = Z(p)2κ . Then H = ΣκZ(p)2κ is κ-pseudocompact by
Corollary 2.14, because it is Gκ-dense in Z(p)2κ . The group G = Tκ × H is a
κ-singular κ-pseudocompact abelian group with r0(G) = 2κ and w(G) = 2κ > κ.
In particular G is cκ-extremal by Lemma 6.21. Thus G is not dκ-extremal by
Theorem 6.2.

(b) Let G = T2κ . Then G is a κ-pseudocompact divisible abelian group G of weight
> κ. So G is dκ-extremal of weight > κ. We can prove that G is not cκ-extremal as
in the proof of Theorem 6.3: G = (Tκ)2κ = T 2κ and ΣκT

2κ is a Gκ-dense (so dense
κ-pseudocompact by Corollary 2.14) subgroup of T 2κ such that r0(T 2κ/ΣT 2κ) ≥
2κ. That G is not cκ-extremal follows also from Theorem 6.10, because G has free
rank > 2κ.



Chapter 7

Dense compact-like subgroups

7.1 Totally dense κ-pseudocompact subgroups

In this section we generalize Theorem B of the introduction for every infinite cardinal κ,
proving Theorem Bκ. Indeed we characterize compact abelian groups admitting some
proper totally dense κ-pseudocompact subgroup, solving the following problem.

Problem 7.1. For an infinite cardinal κ, determine when a compact abelian group
admits some proper totally dense κ-pseudocompact subgroup.

In order to generalize Theorem B proving Theorem Bκ, from previous chapters we
already have κ-pseudocompactness, κ-singularity and the projections onto non-κ-singular
w-divisible products for every infinite cardinal κ. So we need to generalize also the
property TDω. To this aim we introduce appropriate notions generalizing ω-bounded-
ness and the property TDω for every infinite cardinal κ.

7.1.1 κ-Boundedness

Definition 7.2. Let κ be an infinite cardinal. A Tychonov topological space X is:

• weakly κ-bounded if every subset of X of cardinality < κ is contained in a compact
subset of X;

• κ-bounded if every subset of X of cardinality at most κ is contained in a compact
subset of X.

Obviously every topological group is weakly ω-bounded. Moreover these two notions
are related as follows: weakly κ-bounded coincides with the conjunction of λ-bounded
for all λ < κ; in particular, κ-bounded coincides with weakly κ+-bounded).

Examples of non-compact weakly κ-bounded groups of weight κ are given in Example
7.5.

Lemma 7.3. For an infinite cardinal κ, every κ-bounded Tychonov space X is κ-
pseudocompact.

87
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Proof. Let f : X → Rκ be a continuous function and let Y = f(X). In particular
w(Y ) ≤ κ. There exists a dense subset D of Y such that |D| ≤ κ. There exists a subset
D1 of X such that f �D1 : D1 → D is bijective. Then |D1| ≤ κ. Since X is κ-bounded,
D1 is compact. Therefore f(D1) is compact. But f(D1) ⊇ D, D is dense in Y , and so
f(D1) = Y is compact.

Lemma 7.4. Let G and G1 be topological abelian groups such that there exists an open
continuous surjective homomorphism f : G→ G1, and let H be a subgroup of G1. If H
is κ-bounded, then f−1(H) is κ-bounded.

Proof. Let X be a subset of f−1(H) of cardinality ≤ κ. Then f(X) is a subset of H
of cardinality ≤ κ and it is contained in a compact subset Y of H. Then X ⊆ f−1(Y ),
which is compact.

We give examples of non-compact weakly w(G)-bounded groups G and of non-
compact λ-bounded groups G for λ < w(G).

Example 7.5. Let κ be an uncountable cardinal and let K =
∏
i∈I Ki be a w-divisible

product with |I| = κ.

(a) Let λ < κ. We show that

ΣλK = {x ∈ K : |supp(x)| ≤ λ}

is λ-bounded (non-compact). Take A ⊆ ΣλK with |A| ≤ λ. If a ∈ A, then a ∈∏
i∈La Ki, where La ⊆ I and |La| ≤ λ. Define L =

⋃
a∈A La. Thus A ⊆

∏
i∈LKi and

|L| = |A| · supa∈A |La| ≤ λ. Moreover
∏
i∈LKi is contained in ΣλK. Furthermore ΣλK

is proper and dense in K, so it is non-compact and of the same weight of K.

(b) Suppose that κ is regular and consider the following proper subgroup of K:

S =
⋃
λ<κ

ΣλK;

in other words S = {x ∈ K : |supp(x)| < κ}. Clearly S is dense in K, hence S
is not compact and w(S) = w(K) = κ. Let us see that S is weakly κ-bounded (so
λ-bounded for every cardinal λ < κ). Take A ⊆ S with |A| < κ. If a ∈ A, then
a ∈

∏
i∈La Ki, where La ⊆ I and |La| < κ. Define L =

⋃
a∈A La. Thus A ⊆

∏
i∈LKi

and |L| = |A| · supa∈A |La| < κ, as κ is regular. Moreover
∏
i∈LKi is contained in S.

Lemma 7.6. Let κ be an infinite cardinal. A weakly κ-bounded group G with w(G) < κ
is necessarily compact, so every w(G)-bounded group G is compact.

Proof. Let X be a dense subset of G of size ≤ w(G). As w(G) < κ and G is weakly
κ-bounded, X is contained in a compact subset C of G. The density of X in G yields
the density of C in G. Hence C = G. This proves that G is compact.
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7.1.2 The property TDκ

In analogy with the property TDω, for every infinite cardinal κ a compact abelian group
K:

• has the property TDκ (briefly, K ∈ TDκ) if K has a proper totally dense subgroup
that contains a dense κ-bounded subgroup;

• has the property TDκ (briefly, K ∈ TDκ) if K has a proper totally dense subgroup
that contains a dense weakly κ-bounded subgroup.

The properties TDκ and TDκ have properties analogous to those of TDω. Obviously
TDκ coincides with TDκ+

, in particular TDκ implies TDκ and TDω1 coincides with
TDω. Nevertheless, for a limit cardinal κ the property TDκ needs not coincide with the
conjunction of all TDλ for λ < κ (see the comments after Theorem 7.15).

The property TDκ seems to be stronger than to admit a proper totally dense κ-
pseudocompact subgroup, but in Theorem 7.15 we show that these properties are equiv-
alent for compact abelian groups.

The following lemma shows that for each infinite cardinal κ the properties TDκ and
TDκ are stable under taking inverse images. It generalizes [25, Lemma 3.12] and [26,
Lemma 2.6], the proof remains almost the same. It easily follows from Lemmas 1.49 and
7.4.

Lemma 7.7. Let f : K → L be a continuous surjective homomorphism of compact
abelian groups. Let κ be an infinite cardinal. If L has the property TDκ (respectively,
TDκ), then K has the property TDκ (respectively, TDκ) too.

Remark 7.8. Let κ be an infinite cardinal and let K be a compact abelian group.
Moreover let H = md(K)K. Then K ∈ TDκ (respectively, K ∈ TDκ) if and only if
H ∈ TDκ (respectively, H ∈ TDκ) — see Lemma 3.23.

In the next example we explicitly construct a compact abelian group K which has
the property TDκ and in particular is a w-divisible power.

Example 7.9. Let κ be an uncountable cardinal, p ∈ P and Kp = Z(p)κ
+

. Define
K =

∏
p∈PKp; then K ∼=top S

κ+

P , so that we can identify these groups. The subgroup
H = ΣκK + t(K) is totally dense in K. Indeed t(K) =

⊕
p∈PKp is totally dense in K

because each closed subgroup N of K is of the form N =
∏
p∈PNp by Remark 1.44(b).

Moreover H contains ΣκK, which is κ-bounded as proved in Example 7.5(a). Finally we
show that H is proper; let x = (xi)i<κ+ ∈ K = Sκ

+

P be such that xi = x = (yp)p∈P ∈ SP
for every i < κ+ and each yp ∈ Z(p) \ {0}. Then x ∈ ∆K \ t(K) and hence x 6∈ H,
because ∆K ∩ ΣκK = {0}. This proves that H is a proper totally dense subgroup of
K which contains a dense κ-bounded subgroup of K, namely ΣκK, that is K has the
property TDκ.

In Proposition 7.12 we produce a compact abelian group with the property TDκ for
a given infinite cardinal κ. To prove it we need Lemma 7.11, which makes use of the
next one.
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Lemma 7.10. Let K be a compact abelian group, C a torsion free subgroup of K and
B a subgroup of K maximal with the property B ∩C = {0}. Then B ∩mN = m(B ∩N)
for every m ∈ Z \ {0} and for every subgroup N of K. In particular, if p ∈ P, then
B ∩ N 6⊆ pN for every subgroup N of K topologically isomorphic to Zp, whenever
r0(C) < c.

Proof. Let p ∈ P and let N be a subgroup of K such that N ∼=top Zp. If m ∈ Z\{0} and
x ∈ B∩mN , then x = mz, with z ∈ N . Assume that z 6∈ B. It follows that B1 = B+〈z〉
contains properly B. So there exists y ∈ B1 ∩ C, y 6= 0, that is y = b + kz ∈ C, where
b ∈ B and k ∈ Z. Then my = mb + kmz ∈ B ∩ C = {0} and hence my = 0. As C is
torsion free, we conclude that y = 0, finding a contradiction.

Suppose that r0(C) < c and assume for a contradiction that N is a closed subgroup
of K isomorphic to Zp with B ∩ N ⊆ pN . Then B ∩ N = B ∩ pN . Applying the first
part we have also B∩pN = p(B∩N) = p(B∩pN). By induction B∩pN = pn(B∩pN)
for every n ∈ N. Hence

B ∩ pN =
∞⋂
n=0

pn(B ∩ pN),

but
⋂∞
n=0 p

n(B ∩ N) ⊆
⋂∞
n=0 p

nN = {0}. So B ∩ N = {0}. If π : K → K/B is the
canonical projection, this yields that π �N is injective and consequently r0(K/B) ≥
r0(N) = c.

To get a contradiction we prove that

r0(K/B) ≤ r0(C) < c.

Suppose that r0(K/B) > r0(C). Then π(C) is a torsion free subgroup of K/B such
that r0((K/B)/π(C)) ≥ 1. So there exists an infinite cyclic subgroup C1 of K/B such
that C1 ∩ π(C) = {0}. Since π−1(C1) ∩ C = B ∩ C = {0} and π−1(C1) ) kerπ = B,
contradicting the maximality of B.

Thanks to this lemma we prove the following, that produces a totally dense subgroup
containing a given subgroup. It was announced without a proof in [25, Lemma 3.16].

Lemma 7.11. Let K be a compact abelian group that admits a subgroup B such that
r0(K/B) ≥ 1. Then K has a proper totally dense subgroup H that contains B.

Proof. Since r0(K/B) ≥ 1, there exists a cyclic infinite subgroup C of K such that
B ∩ C = {0}. Let B1 = B + t(K); then B1 ∩ C = {0}. By Zorn’s lemma there exists a
subgroup H of K such that H ⊇ B1, H∩C = {0} and H is maximal with respect to these
two properties. It immediately follows that H ⊇ B and that H is a proper subgroup of
K. Moreover t(K) ⊆ H and by Lemma 7.10 H ∩ N 6⊆ pN for every subgroup N of K
isomorphic to Zp and for every p ∈ P. Apply Theorem 1.51 to conclude that H is totally
dense in K.

Then next proposition generalizes [26, Proposition 2.4].

Proposition 7.12. Let κ be an uncountable cardinal and K =
∏
i∈I Ki a w-divisible

product with |I| = κ. Then K has the property TDλ for every ω ≤ λ < κ.
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Proof. Let λ be an infinite cardinal < κ. As shown in Example 7.5(a) B = ΣλK is
a λ-bounded subgroup of K. For every i ∈ I let ci be a non-torsion element of Ki.
Defining C = 〈(ci)i∈I〉 we have B ∩ C = {0} and so r0(K/B) ≥ 1. Apply Lemma 7.11
to conclude the proof.

7.1.3 Main theorems

The regularity of κ is essential in Example 7.5(b). Indeed we have the following theo-
rem characterizing the regularity of uncountable cardinals κ in terms of the topological
property TDκ.

Theorem 7.13. Let κ be an uncountable cardinal. Then the following conditions are
equivalent:

(a) κ is regular;

(b) every w-divisible product of the form
∏
i∈I Ki with |I| = κ has the property TDκ;

(c) there exists a compact abelian group K of weight κ such that K ∈ TDκ;

(d) there exists a compact abelian group of weight κ with a proper dense weakly κ-
bounded subgroup.

Proof. (a)⇒(b) Let K =
∏
i∈I Ki be a w-divisible product with |I| = κ. As shown in

Example 7.5(b) B =
⋃
λ<κ ΣλK is a weakly κ-bounded subgroup of K. For every i ∈ I

let ci be a non-torsion element of Ki. Defining C = 〈(ci)i∈I〉 we have B ∩ C = {0} and
so r0(K/B) ≥ 1. Apply Lemma 7.11 to conclude that K ∈ TDκ.

(b)⇒(c) and (c)⇒(d) are obvious.

(d)⇒(a) Let H be a proper dense weakly κ-bounded subgroup of a compact abelian
group K. Fix a point x ∈ K \H and assume for a contradiction that λ = cf(κ) < κ, i.e.,

κ = sup
α<λ

κα, with κα < κ for all α < λ.

We can assume without loss of generality that K is a subgroup of Tκ. Write Tκ =∏
α<λ Tα, where Tα ∼=top Tκα for each α < λ. For α < λ, let Nα =

∏
β<α Tβ and let

pα : Tκ → Nα be the canonical projection. By Fact 2.6(a) pα(H) is dense in pα(K).
Since w(Nα) = κα < κ, pα(H) is also compact (so closed) in pα(K). So pα(H) = pα(K).
Then there exists hα ∈ H such that

pα(hα) = pα(x). (7.1)

The set A = {hα : α < λ} ⊆ H has size ≤ λ < κ. Hence the weak κ-boundedness of H
implies that C = A

H is compact. Then C is closed in K. On the other hand, for every
neighborhood U of 0 in Tκ there exists a projection pα such that ker pα ⊆ U . Now (7.1)
yields hα−x ∈ U , so A∩ (x+U) 6= ∅. This proves that x ∈ C ⊆ H, a contradiction.



92 CHAPTER 7. DENSE COMPACT-LIKE SUBGROUPS

The next example shows a w-divisible group K of non-regular weight having no
proper dense weakly w(K)-bounded subgroup at all (so in particular K 6∈ TDw(K)).
Moreover K admits no continuous surjective homomorphism onto a w-divisible power
Swd(K).

Example 7.14. Let P = {pn : n ∈ N+} be all primes written in increasing order. Then
the group K =

∏∞
n=1 Z(pn)ℵn is w-divisible of weight ℵω. Nevertheless, there exists

no continuous surjective homomorphism of K onto a w-divisible power Sℵω . Indeed
if such a projection K → Sℵω exists, by Remark 1.44(c) for n ∈ N+ the restriction
Kpn = Z(pn)ℵn → Sℵωpn is a continuous surjective homomorphism; this is not possible.
From Theorem 7.13 it follows that K 6∈ TDℵω .

The subgroup
⋃
λ<ℵω ΣλK of K (defined in Example 7.5(b)) is not even ω-bounded.

In fact it is not even countably compact, as it contains a sequence (xn)n∈N+ that con-
verges to a point of K \

⋃
λ<κ ΣλK, although it is pseudocompact. In what follows

we construct such a sequence. For every n ∈ N+ let en ∈ Z(pn)ℵn be the element
en = (en,i)i<ℵn with en,i = 1Z(pn) for every i < ℵn. Then for every n ∈ N+ let
xn = (e1, . . . , en, 0, . . .) ∈ ΣℵnK. The sequence (xn)n∈N+ converges to the element
e = (en)n∈N+ which has |supp(e)| = ℵω and so e 6∈

⋃
λ<ℵω ΣλK.

The following theorem is Theorem Bκ of the introduction and it is a complete gen-
eralization of Theorem B (indeed, to get Theorem B it suffices to take λ = ω). Theorem
4.11 and Corollary 4.18 apply to prove it.

Theorem 7.15. Let κ be an infinite cardinal and let K be a compact abelian group. The
following conditions are equivalent:

(a) K has a proper totally dense κ-pseudocompact subgroup;

(b) K is non-κ-singular;

(c) there exists a continuous surjective homomorphism of K onto Sκ
+

, where S is a
compact non-torsion abelian group;

(d) K has the property TDκ.

Moreover, K ∈ TDwd(K) if and only if wd(K) is an uncountable regular cardinal.

Proof. All conditions (a)–(e) imply that K has to be non-singular.

(a)⇒(b) Suppose that K is κ-singular. By Lemma 3.35 there exists a torsion N ∈
Λκ(K) and Theorem 2.20 implies that w(K/N) ≤ κ. Let H be a proper totally dense
κ-pseudocompact subgroup of K. Since N is torsion and H is totally dense, N ≤ H by
Lemma 1.47(b). By Corollary 2.14 H is Gκ-dense in K and so K = N +H by Lemma
2.22(a). Therefore N ≤ H yields K = H, a contradiction.

(b)⇔(c) is Corollary 4.18.

(c)⇒(d) Assume there exists a continuous surjective homomorphism of K onto Sκ
+

,
where S is a compact non-torsion abelian group. By Remark 4.4 it is possible to suppose
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that S is metrizable. By Proposition 7.12 Sκ
+

has the property TDκ, hence also K has
the property TDκ thanks to Lemma 7.7.

(d)⇒(a) follows from Lemma 7.3.

Let κ = wd(K) > ω. Assume that it is regular. By Theorem 4.11 there exists a
continuous surjective homomorphism of K onto a w-divisible product C of weight κ. By
Theorem 7.13, C has the property TDκ, hence also K has the property TDκ thanks
to Lemma 7.7. To end the proof assume K ∈ TDκ. By Lemma 3.23 the subgroup
H = md(K)K of K is such that w(H) = wd(H) = κ; in particular H is w-divisible and
H ∈ TDκ by Remark 7.8. Apply again Theorem 7.13 to conclude that κ is regular.

All conditions (a)–(e) imply that κ < w(K). In case κ ≥ w(K) they are all false.
The equivalence of (b) and (d) in Theorem 7.15 implies

wd(K) = sup{κ : K ∈ TDκ},

but leaves open the question of when K ∈ TDwd(K) holds true. This motivates the
final part of the theorem that settles completely this issue. Consequently, for an infinite
cardinal κ the property TDκ coincides for compact abelian groups with the conjunction
of all TDλ for λ < κ precisely when κ is regular. Analogously, the equivalence of (c)
and (d) yields:

wd(K) = sup{κ : there exists a compact non-torsion abelian group S

and a surjective continuous homomorphism K → Sκ}.

7.2 Essential dense κ-pseudocompact subgroups

As an immediate corollary of Theorem 6.2 we obtain the following result in case the
dense κ-pseudocompact subgroup is required to be also either rκ- or sκ-extremal.

Corollary 7.16. Let κ be an infinite cardinal. A proper dense κ-pseudocompact subgroup
of a topological abelian group cannot be either sκ- or rκ-extremal.

Proof. If D is a dense either sκ- or rκ-extremal κ-pseudocompact subgroup of G, then
D is compact by Theorem 6.2. Hence D is closed in G and so D = G, since D is also
dense in G.

This proves that the concept of rκ-extremal κ-pseudocompact group is “dual” to
that of minimal κ-pseudocompact group, in the sense that a κ-pseudocompact group is
minimal if there exists no strictly coarser κ-pseudocompact group topology on G. So
Corollary 7.16 suggests the following problem:

Problem 7.17. For an infinite cardinal κ, when does a κ-pseudocompact abelian group
admit a proper dense minimal κ-pseudocompact subgroup?

In Theorem 7.21 we completely solve Problem 7.17 in the compact case, i.e., in view
of Theorem 1.50, we solve the following:
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Problem 7.18. For an infinite cardinal κ, determine when a compact abelian group
admits some proper essential dense κ-pseudocompact subgroup.

It is immediately possible to prove the following proposition, which gives a nec-
essary condition for a κ-pseudocompact abelian group to have proper essential dense
κ-pseudocompact subgroups.

Proposition 7.19. Let κ be an infinite cardinal and let G be a κ-pseudocompact abelian
group. If G is super-κ-singular, then G has no proper essential dense κ-pseudocompact
subgroup.

Proof. Let H be an essential dense κ-pseudocompact subgroup of G. Since H is essential
in G, it follows that H ⊇ Soc(G) by Lemma 1.47(a) and so H ⊇ N ∈ Λκ(G). By
Corollary 2.14 H is Gκ-dense in G. Therefore Lemma 2.22(a) implies that H +N = G
and so H = G.

The next example shows that there exist compact abelian groups that have proper
essential dense κ-pseudocompact subgroups, although they have no proper totally dense
subgroup (because they are torsion).

Example 7.20. Let κ be an infinite cardinal and let p ∈ P. Consider the compact
p-group K = Z(pm)κ

+
with m ∈ N,m > 1. Then K[p] + ΣκK is a proper essential dense

κ-pseudocompact subgroup of K.
In fact K[p] is essential in K and ΣκK is Gκ-dense in K. Moreover K[p] + ΣκK is

proper in K. Indeed fix an element x ∈ Z(pm) \ Z(p) and define x = (xi)i<κ+ ∈ K by
xi = x for every i < κ+. Since ΣκK intersects trivially the diagonal subgroup ∆K of K
and x 6∈ Z(p), it follows that x ∈ K \ (K[p] + ΣκK). Since K[p] + ΣκK is Gκ-dense in
K, it is dense κ-pseudocompact by Corollary 2.14.

In view of Theorem 7.15, to solve Problem 7.18 we can consider the case when K
is a κ-singular compact abelian group of weight > κ. The following theorem, which is
Theorem Cκ of the introduction, solves Problem 7.18 and gives necessary and sufficient
conditions for K to admit a proper essential dense κ-pseudocompact subgroup. We give
it in negative form to have a clearer statement.

Theorem 7.21. Let κ be an infinite cardinal and let K be a compact abelian group.
Then the following conditions are equivalent:

(a) K admits no proper essential dense κ-pseudocompact subgroup;

(b) K is κ-singular and w(pTp(K)) ≤ κ for every p ∈ P;

(c) K is super-κ-singular.

Proof. (a)⇒(b) Suppose that K has no proper essential dense κ-pseudocompact sub-
group. In particular K has no proper totally dense κ-pseudocompact subgroup; so by
Theorem 7.15 K is κ-singular. Lemma 3.39 yields that w(c(K)) ≤ κ and Lemma 3.37
implies that L = K/c(K) is κ-singular. Since L is totally disconnected, L ∼=top

∏
p∈P Lp
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by Remark 1.44(b), where each Lp is κ-singular by Lemma 3.37. If there exists p ∈ P
such that w(pTp(K)) > κ, then w(pLp) > κ by Remark 1.44(d).

In particular Lp is a κ-singular compact Zp-module of weight > κ. Thus there exists
m ∈ N+ such that w(pmLp) ≤ κ and w(pm−1Lp) > κ. By Lemma 1.46 there exist a
compact Zp-module L′p of weight ≤ κ and a compact bounded torsion abelian group
B ∼=top

∏m
n=1 Z(pn)αn such that Lp ∼=top L

′
p × B and αm > κ. Since w(pLp) > κ, we

have m > 1 and consequently there exists a proper essential dense κ-pseudocompact
subgroup of Z(pm)αm as Example 7.20 shows.

The composition of the projections

K → L, L→ Lp, Lp ∼=top L
′
p ×B → B and B ∼=top

m∏
n=1

Z(pn)αn → Z(pm)αm

is a continuous surjective homomorphism K → Z(pm)αm . So apply Lemmas 1.22, 1.49(a)
and 2.23(c) to find a proper essential dense κ-pseudocompact subgroup of K.

(b)⇒(c) By Lemma 1.43 there exists a totally disconnected closed subgroup N of
K such that K = N + c(K). Since K is κ-singular, w(c(K)) ≤ κ by Lemma 3.39 and
so w(K/N) ≤ κ because K/N ∼=top c(K)/(N ∩ c(K)) also by Theorem 1.28. Hence
N ∈ Λκ(K) by Theorem 2.20. According to Lemma 3.54 it suffices to prove that N is
super-κ-singular.

Since N is totally disconnected and compact, it follows that N ∼=top
∏
p∈PNp by

Remark 1.44(b). By Remark 1.44(a) Np ≤ Tp(K) and so w(pNp) ≤ κ for every p ∈ P.
Moreover N is κ-singular. According to Lemma 3.42 P = Ps,κ(N) and P \ Pm,κ(N) is
finite. This means that

N ∼=top M ×
∏

P\Pm,κ(N)

Np,

where M =
∏
p∈Pm,κ(N)Np has weight ≤ κ and

∏
P\Pm,κ(N)Np is a finite product; each

Np with p ∈ P \ Pm,κ(N) is a κ-singular compact Zp-module of weight > κ. Since
w(pNp) ≤ κ for every p ∈ P, for p ∈ P \ Pm,κ(N) Lemma 1.46 with m = 1 implies
Np
∼=top N

′
p × Bp, where N ′p is a compact Zp-module of weight ≤ κ and Bp = Z(p)αp

with αp > κ. Therefore

N ∼=top M ×
∏

p∈P\Pm,κ(N)

N ′p ×
∏

p∈P\Pm,κ(N)

Bp.

Let B be a subgroup of N such that

B ∼=top

∏
p∈Pm,κ(N)

{0Np} ×
∏

p∈P\Pm,κ(N)

{0N ′p} ×
∏

p∈P\Pm,κ(N)

Bp.

Then Soc(N) ⊇ B as P \Pm,κ(N) is finite. Since w(N/B) ≤ κ, B ∈ Λκ(N) by Theorem
2.20. This means that N is super-κ-singular by Lemma 3.53.

(c)⇒(a) follows from Proposition 7.19.
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7.3 Either totally dense or essential dense subgroups

In this section we consider and solve the counterparts of Problems 7.1 and 7.18 omit-
ting the condition κ-pseudocompact for the subgroups. Indeed we characterize com-
pact abelian groups admitting some proper totally dense subgroup and compact abelian
groups admitting some proper essential dense subgroup.

As a corollary of Lemma 7.11, we obtain a very simple characterization of compact
abelian groups having proper totally dense subgroups:

Theorem 7.22. Let K be a compact abelian group. Then K admits some proper totally
dense subgroup if and only if K is non-torsion.

Proof. Assume that K is non-torsion, that is K 6= t(K) and so r0(K/t(K)) ≥ 1. Apply
Lemma 7.11 with B = t(K) to find a proper totally dense subgroup of K.

If K is torsion, then K cannot have any proper totally dense subgroup, because every
totally dense subgroup contains t(K) = K by Lemma 1.47(b).

The group in the following example is a (metrizable) compact abelian group that has
a proper essential dense subgroup but no proper dense pseudocompact subgroup.

Example 7.23. Let p ∈ P and K = Z(pm)ω with m ∈ N. Then K[p] is a proper
essential dense subgroup of K if and only if m > 1.

The following result characterizes compact abelian groups admitting some proper
essential dense subgroup, in terms similar to those of Theorem 7.21.

Theorem 7.24. Let K be a compact abelian group. Then the following conditions are
equivalent:

(a) K has no proper essential dense subgroup;

(b) K is torsion and pTp(K) is finite for every p ∈ P;

(c) Soc(K) is open.

Proof. (a)⇒(b) Suppose that K has no proper essential dense subgroup, in particular
K has no proper totally dense subgroup. Then Theorem 7.22 implies that K is torsion.
By Fact 1.36 K is bounded torsion and so K ∼=top Kp1 × . . . × Kpn for some n ∈ N+

and p1, . . . , pn ∈ P (in particular K is totally disconnected and Remark 1.44(b) can be
applied). This means that Kp = {0} for all p ∈ P \ {p1, . . . , pn}.

Since K has no proper essential dense subgroup, in particular K has no proper
essential dense pseudocompact subgroup and so pKp is metrizable for every p ∈ P by
Theorem 7.21 with κ = ω. According to Lemmas 1.22 and 1.49(a) Kp cannot have any
proper essential dense subgroup for every p ∈ P. Let us prove that pKp is finite for every
p ∈ P. Suppose that pKp is infinite for some p ∈ P (then p ∈ {p1, . . . , pn}). Since K is
bounded torsion, Kp is a compact bounded p-torsion abelian group. Consequently

Kp
∼=top Z(p)α1 × . . .× Z(ps)αs
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for some cardinals α1, . . . , αs, where s ∈ N+. Since pKp is infinite and metrizable, there
exists m ∈ N, with 1 < m ≤ s such that αm = ω. By Example 7.23 Z(pm)αm has a
proper essential dense subgroup. Consider the composition of the projections K → Kp

and Kp → Z(pm)αm and apply Lemmas 1.22 and 1.49(a) to find a proper essential dense
subgroup of K, a contradiction.

(b)⇒(c) Since K is torsion, it follows that K is bounded torsion by Fact 1.36. In
particular it is totally disconnected, and we can apply Remark 1.44(b). We have

K ∼=top Kp1 × . . .×Kpn ,

where n ∈ N+ and p1, . . . , pn ∈ P. Since Kp/Kp[p] ∼=top pKp is finite by hypothesis for
every p ∈ P, the subgroup Soc(K) = Kp1 [p1]⊕ . . .⊕Kpn [pn] has finite index in K. Since
Soc(K) is closed, it is also open in K.

(c)⇒(a) Let H be an essential dense subgroup of K. Then H ⊇ Soc(K) by Lemma
1.47(a); since Soc(K) is open in K so is H. This implies that H is closed in K. Since
H is also dense in K, we conclude that H = K.

Corollary 7.25. Let K be a compact abelian group, and let H be an open essential
subgroup of K. Then K has no proper essential dense subgroup if and only if H has no
proper essential dense subgroup.

7.4 Small essential pseudocompact subgroups

In [15] Comfort and Robertson studied the compact groups that admit small strongly
totally dense pseudocompact subgroups and proved the following theorem.

Theorem 7.26. [15, Theorem 6.2] ZFC cannot decide whether there exists a compact
group K with small strongly totally dense pseudocompact subgroups.

In the proof of this theorem a totally disconnected compact abelian group admitting
some small totally dense pseudocompact subgroup is produced. Consequently, as stated
in [15, Theorem 6.3], it is possible to deduce the following result, which is the counterpart
of Theorem 7.26 in the abelian case.

Theorem 7.27. ZFC cannot decide whether there exists a totally disconnected compact
abelian group with small totally dense pseudocompact subgroups.

In this section, in Theorems 7.45 and 7.46 we prove the counterpart of this theorem
for essential dense pseudocompact and essential pseudocompact subgroups.

7.4.1 CR-cardinals

First we define the following concept, because cardinals with these properties were useful
to prove Theorem 7.26.

Definition 7.28. A cardinal κ is a CR-cardinal if cf(κ) = ω and log 2κ = κ.
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By the definition every CR-cardinal is a limit cardinal. So without loss of generality
we can consider limit cardinals. A first example of CR-cardinal is ω.

In the following claim we give some properties of CR-cardinals.

Claim 7.29. Let κ be a cardinal.

(a) If cf(κ) = ω, then log 2κ = κ if and only if 2<κ < 2κ. In particular κ is a CR-
cardinal if and only if cf(κ) = ω and 2<κ < 2κ.

(b) If κ is a CR-cardinal such that κ+ = 2κ, then κ is a strong limit.

(c) If κ is a strong limit, then it is a CR-cardinal if and only if cf(κ) = ω.

(d) Under GCH, κ is a CR-cardinal if and only if cf(κ) = ω.

Proof. (a) Suppose that log 2κ = κ. Let {κn}n∈N be an increasing sequence of cardinals
< κ such that supn∈N κn = κ. Then 2κn < 2κ for every n ∈ N. If there exists n ∈ N such
that 2κn = 2<κ, then 2<κ < 2κ. If 2κn < 2κ for every n ∈ N, then cf(2<κ) = ω, because
2<κ = supn∈N 2κn . Since cf(2κ) > κ ≥ ω by Fact 1.1, it follows that 2<κ < 2κ.

The condition 2<κ < 2κ implies 2λ < 2κ for every λ < κ and this is equivalent to
log 2κ = κ.

(b) Let {κn}n∈N be an increasing sequence of cardinals < κ such that supn∈N κn = κ.
Since log 2κ = κ, 2κn < 2κ for every n ∈ N. By hypothesis 2κ = κ+. Then 2κn < κ for
every n ∈ N by Claim 1.2. This implies that κ is a strong limit.

(c) Since κ is a strong limit if and only if log κ = κ by Claim 1.3, it follows that
log 2κ = κ. So this condition of the definition of CR-cardinal is satisfied. Then κ is a
CR-cardinal if and only if it has countable cofinality.

(d) Since 2κ = κ+ by GCH, by (c) κ is a CR-cardinal if and only if cf(κ) = ω.

Remark 7.30. The problem of the existence of a small essential dense pseudocompact
subgroup of a compact abelian group could be divided into two parts: the existence of
a small essential (dense) subgroup and the existence of a small dense pseudocompact
subgroup. Indeed, having these subgroups, it suffices to take their sum to find a small
essential dense pseudocompact subgroup. We have considered the second part in Section
5.1; in particular Corollary 5.10 shows that

under GCH no compact abelian group K such that w(K) is a CR-cardinal
admits some small dense pseudocompact subgroup.

7.4.2 Measuring essential subgroups

The following cardinal invariant is introduced in analogy with ED(−) and TD(−) (see
Definition 1.53):

Definition 7.31. For a topological group G let

E(G) = min{|H| : H ≤ G essential}.
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We immediately give an example. The argument is due to Prodanov [59].

Example 7.32. For p ∈ P, E(Z2
p) = c.

In fact, E(Z2
p) ≤ |Z2

p| = c. Moreover there exist c many subgroups of Z2
p topologically

isomorphic to Zp and pairwise with trivial intersection: for every ξ ∈ Zp \ {0}, let
Nξ = 〈(1, ξ)〉 ∼=top Zp. If ξ1, ξ2 ∈ Zp, then Nξ1 ∩ Nξ2 = {0}. These Nξ are exactly
|Zp| = c many. Since an essential subgroup non-trivially intersects each non-trivial
closed subgroup, it follows that E(Z2

p) ≥ c and so E(Z2
p) = c.

Lemma 7.33. Let G be a topological abelian group. Then:

(a) E(G) ≤ ED(G) ≤ TD(G);

(b) ED(G) = d(G) · E(G).

Proof. (a) is obvious.
(b) It is clear that ED(G) ≥ d(G) · E(G). Let D be a dense subgroup of G of

cardinality d(G) and let E be an essential subgroup of G of cardinality E(G). Then
D + E has cardinality d(G) · E(G). Moreover D + E is an essential dense subgroup
of G and so |D + E| ≥ ED(G). It follows that d(G) · E(G) ≥ ED(G) and hence
ED(G) = d(G) · E(G).

The next lemma in particular shows that E(−) is monotone under taking closed
subgroups.

Lemma 7.34. Let K be a compact abelian group and N a closed subgroup of K. Then:

(a) E(N) ≤ E(K);

(b) if |N | = |K| then E(K) < |K| yields E(N) < |N |;

(c) E(Kp) ≤ E(K) for every p ∈ P.

Proof. (a) If H is essential in K, then H ∩N is essential in N .
(b) Suppose that E(N) = |N |. Since |N | = |K| by hypothesis and E(K) ≥ E(N) by

(a), it follows that E(K) = |K|.
(c) follows from Corollary 1.52.

Remark 7.35. If K is a compact abelian group with a finite essential subgroup H, then
K is finite.

Proof. We want to reduce to the totally disconnected case. Since H is finite, it follows
that there exists q ∈ P such that rq(H) = 0. Therefore H ∩ Kq = Hq = {0} and so
Kq = {0} by the essentiality of H in K. By Remark 1.44(f) K is totally disconnected.
Then K ∼=top

∏
p∈PKp, where each Kp is closed, by Remark 1.44(b). Since H is finite

essential, Kp = {0} for every p ∈ P \P , where P is a finite subset of P. Let p ∈ P . Then
Kp cannot contain any topologically isomorphic copy of Zp, because it is torsion free.
Consequently Kp

∼=top
∏∞
n=1 Z(pn)αn for some cardinals αn, with n ∈ N+, by Remark
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1.17. Since H ∩ Kp is a finite essential subgroup of Kp by Lemma 7.34, H ∩ Kp ⊇
Soc(Kp) ∼=

∏∞
n=1 Z(p)αn implies that αn = 0 for all but finitely many n ∈ N+ and each

αn is finite. Therefore Kp is finite and so K is finite, because P is finite.

Remark 7.36. Let K be a compact abelian group of weight ω. If E(K) < |K| then
E(K) = TD(K) = ω [60]. So

(a) either E(K) = ED(K) = TD(K) = |K|,

(b) or E(K) = ED(K) = TD(K) = w(K).

Proposition 7.37. Let p ∈ P and let M be a topological Zp-module such that M 6∈ P
and M [p] is compact. Then

E(M) = |M | = c · rankZp(M) · rp(M).

Proof. First we prove that
E(M) ≥ c.

Indeed, since M 6∈ P, by Corollary 1.58(a) either rankZp(M) ≥ 2 or rp(M) is infinite. If
rankZp(M) ≥ 2, then M has a subgroup isomorphic to Z2

p and so E(M) ≥ E(Z2
p) = c by

Lemma 7.34(a) and Example 7.32. If rp(M) is infinite, then rp(M) ≥ c, because M [p]
is compact and so |M [p]| ≥ c by Theorem 1.37. Moreover E(M) ≥ rp(M) in view of
Lemma 1.47(a) and so E(M) ≥ c. In both cases E(M) ≥ c.

Now we show that
E(M) ≥ rankZp(M).

Let H be an essential subgroup of M . Let S be a maximal Zp-independent subset of M .
For every x ∈ S consider 〈x〉 = 〈x〉Zp ∼=top Zp. Then

F =
{
〈x〉 : x ∈ S

}
is a family of closed subgroups of M topologically isomorphic to Zp and pairwise with
trivial intersection. Since H is essential in M , H non-trivially intersects each of these
subgroups in F . Consequently |H| ≥ |F| = |S| = rankZp(M). This proves that E(M) ≥
rankZp(M).

Moreover E(M) ≥ rp(M) by Lemma 1.47(a). Therefore E(M) ≥ c · rankZp(M) ·
rp(M). By Corollary 1.58(c) E(M) ≤ |M | = c · rankZp(M) · rp(M) and so E(M) =
|M | = c · rankZp(M) · rp(M).

Proposition 7.37 can be proved in the general case of a compact abelian group K,
thanks to the fact that the essentiality of a subgroup can be verified “locally”, namely
in Kp for every p ∈ P by Corollary 1.52. We do this in Theorem 7.39.

Remark 7.38. Let K be a compact abelian group such that K 6∈ P. By Remark 1.59
πP(K) is not empty. Moreover

sup
p∈P

E(Kp) = sup
p∈P\πP (K)

E(Kp) · sup
p∈πP (K)

E(Kp).
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By Corollary 1.58(b), if p ∈ P \ πP(K), then |Kp| ≤ c and in particular E(Kp) ≤
|Kp| ≤ c. Consequently

sup
p∈P\πP (K)

E(Kp) ≤ sup
p∈P\πP (K)

|Kp| ≤ c.

If p ∈ πP(K) then |Kp| = c · rankZp(Kp) · rp(Kp) by Corollary 1.58(c). By Proposition
7.37 E(Kp) = |Kp| ≥ c for every p ∈ P. Consequently

sup
p∈P

E(Kp) = sup
p∈πP (K)

E(Kp) = sup
p∈πP (K)

|Kp| = sup
p∈P
|Kp|. (7.2)

Theorem 7.39. Let K be a compact abelian group such that K 6∈ P. Then

E(K) = ED(K) = TD(K) = sup
p∈P
|Kp|.

Proof. By Lemma 7.34(c) E(K) ≥ E(Kp) for every p ∈ P. Then E(K) ≥ supp∈PE(Kp)
and supp∈PE(Kp) = supp∈P |Kp| by (7.2) of Remark 7.38. Then

E(K) ≥ sup
p∈P
|Kp|.

Since the subgroup wtd(K) =
⊕

p∈PKp is totally dense in K [65], so

TD(K) ≤ |wtd(K)| = sup
p∈P
|Kp|.

Consequently E(K) ≥ TD(K). By Lemma 7.33(a) E(K) = ED(K) = TD(K).

A consequence of this theorem and Remark 7.38 is that for a compact abelian group
K 6∈ P

E(K) = ED(K) = TD(K) = sup
p∈πP (K)

c · ρp(K) · rp(K).

This confirms the idea that the cardinal invariant E(−) is strictly related to the algebraic
structure of the group. Indeed we see that it can be computed in terms of two purely
algebraic cardinal invariants, unlike the behavior of m(−), that is the other cardinal
invariant involved in this section. In fact we have explained in Section 5.1 that the value
of m(−) depends only on the weight and so it has a more topological nature.

Corollary 7.40. If K is a compact abelian group such that K 6∈ P, then E(K) ≥ w(K).

Proof. By Theorem 7.39 E(K) = ED(K) and ED(K) ≥ w(K) by Fact 1.57.

The next theorem motivates Definition 7.28.

Theorem 7.41. For a non-metrizable compact abelian group K the following conditions
are equivalent:

(a) K has a small totally dense subgroup (TD(K) < |K|);
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(b) K has a small essential dense subgroup (ED(K) < |K|);

(c) K has a small essential subgroup (E(K) < |K|);

(d) w(K) is a CR-cardinal.

Proof. By Theorem 7.39 (a), (b) and (c) are equivalent.

(a)⇒(d) Suppose that TD(K) < |K|. By Theorem 1.61 this implies that w(K) >
w(c(K)) and w(K) > w((K/c(K))p) for every p ∈ P. Then w(K) is a limit and TD(K) =
2<w(K) by Theorem 1.61. Hence 2<w(K) < 2w(K) and Claim 7.29(a) implies that w(K)
is a CR-cardinal.

(d)⇒(a) Assume that w(K) is a CR-cardinal. By Claim 7.29(a) w(K) has countable
cofinality and 2<w(K) < 2w(K) = |K|. In particular w(K) is a limit. By Theorem 1.61
TD(K) = 2<w(K) and so TD(K) < 2w(K) = |K|.

In the following corollary it is stressed the direct relation between the concept of
being a CR-cardinal and the existence of small subgroups of compact abelian groups,
which are either totally dense, or essential dense, or essential.

Corollary 7.42. Let K be a compact abelian group K with w(K) = κ, where κ is a
cardinal which is not a strong limit. Then the following conditions are equivalent:

(a) K has a small totally dense pseudocompact subgroup H;

(b) K has a small essential dense pseudocompact subgroup H;

(c) K has a small essential pseudocompact subgroup H;

(d) κ is a CR-cardinal.

If the above conditions hold, H can be chosen of size any κ with 2<κ ≤ κ < 2κ.

Proof. (a)⇒(b)⇒(c) is obvious.

(c)⇒(d) Since E(K) < |K|, it follows that κ is a CR-cardinal by Theorem 7.41.

(d)⇒(a) By Theorem 7.41 TD(K) < |K|. Since κ is not a strong limit, it follows
that m(κ) < 2κ by Corollary 5.10 together with Claim 7.29(a). Hence m(κ) < 2κ = |K|.
Therefore there exist a small totally dense subgroup H of K and a small dense pseudo-
compact subgroup D of K. Consequently H+D is a small totally dense pseudocompact
subgroup of K.

7.4.3 Independence results

The next proposition is inspired by [15, Theorem 6.2, Theorem 5.8 and Theorem 2.7(d)].
We construct an example of a totally disconnected compact abelian group K such that
TD(K) < |K| and m(w(K)) < |K| and which has the minimal weight it can have:
indeed w(K) has to be uncountable and with countable cofinality and so ℵω is the
smallest cardinal w(K) can be.
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Proposition 7.43. It is consistent with ZFC that there exists a totally disconnected
compact abelian group of weight ℵω with a small totally dense pseudocompact subgroup.

Proof. We construct a totally disconnected compact abelian group with w(K) = ℵω,
such that TD(K) < |K| and m(ℵω) < 2ℵω = |K|. To this end we make use of Easton’s
theorem [41] to provide a model of ZFC with 2ℵn = ℵω+n for every n ∈ N+. Hence
2<ℵω = ℵω+ω. Since cf(ℵω+ω) = ω, and cf(2ℵω) > ω by Fact 1.1, it follows that 2<ℵω <
2ℵω . Therefore ℵω is a CR-cardinal by Claim 7.29(a). Let P = {pn : n ∈ N+} and
K =

∏∞
n=1 Z(pn)ℵn . In particular K is a totally disconnected compact abelian group

such that w(K) = supn∈N+
ℵn = ℵω. By Theorem 7.41 TD(K) < |K|.

Being 2ℵ1 = ℵω+1 > ℵω, then logℵω ≤ ℵ1. Since ℵ1
ω ≤ 2ℵ1 ≤ 2<ℵω , it follows

that 2<ℵω < ℵω implies (logℵω)ω < 2ℵω . This implies m(ℵω) < |K|, because m(ℵω) ≤
(logℵω)ω by Fact 5.5(a). Therefore there exist small subgroups H1, H2 of K such that
H1 is totally dense in K and H2 is dense pseudocompact in K. Hence H = H1 +H2 is
a small totally dense pseudocompact subgroup of K. It is pseudocompact because H2

is Gδ-dense in K by Corollary 2.14 with κ = ω; then H is Gδ-dense in K as well and so
H is dense pseudocompact in K by Corollary 2.14 with κ = ω.

The next proposition follows from Theorem 7.41 and together with the previous
proposition is the proof of Theorem 7.45.

Proposition 7.44. Under GCH no compact abelian group has a small essential pseu-
docompact subgroup.

Proof. LetH be a small essential subgroup of a compact abelian groupK with w(K) = κ.
By Corollary 7.40 E(K) ≥ w(K) and so κ ≤ |H| < 2κ = κ+. By Theorem 7.41 κ is a
CR-cardinal and then κ is a strong limit of countable cofinality. Consequently H cannot
be pseudocompact by Theorem 1.37.

Theorem 7.45. ZFC cannot decide whether there exists a totally disconnected compact
abelian group of weight ℵω with small essential dense pseudocompact subgroups.

Proof. According to Proposition 7.43 it is consistent with ZFC that there exists a totally
disconnected compact abelian group of weight ℵω with a small essential dense pseudo-
compact subgroup. Moreover under GCH there exists no compact abelian group with
small essential pseudocompact subgroups by Proposition 7.44.

The following is Theorem F of the introduction. It is similar to Theorem 7.45 and
its proof is based on the same results. But Theorem 7.45 could be proved also as a
consequence of the fact that ED(K) = TD(K) ≥ w(K) for compact abelian groups K
(see Facts 1.54 and 1.57), while the difficulty in Theorem 7.46 is to consider essential
pseudocompact subgroups which are non-necessarily dense. This more complicated part
is contained in Theorem 7.39, that is in proving that E(K) = ED(K) = TD(K) for
non-metrizable compact abelian groups.

Theorem 7.46. ZFC cannot decide whether there exists a compact abelian group with
small essential pseudocompact subgroups.
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Proof. According to Proposition 7.43 it is consistent with ZFC that there exists a com-
pact abelian group with a small essential pseudocompact subgroup. Moreover under
GCH there exists no compact abelian group with small essential pseudocompact sub-
groups by Proposition 7.44.

7.5 Open problems

In this section we collect all open problems related to the previous sections of this
chapter.

In Section 7.1 we solve Problem 7.17 in the compact case, but it remains open in
general. It is open also its counterpart for essential subgroups. We collect both in the
following:

Problem 7.47. Let κ be an infinite cardinal.

(a) Describe the κ-pseudocompact abelian groups that admit proper dense minimal κ-
pseudocompact subgroups.

(a∗) Describe the κ-pseudocompact abelian groups that admit proper essential dense κ-
pseudocompact subgroups.

This problem suggests to consider its counterpart for total minimality and total
density. In fact, in Section 7.2 we give a characterization of compact abelian groups
admitting some proper totally dense κ-pseudocompact subgroup, but it is possible to
consider the same question for κ-pseudocompact abelian groups. As in Problem 7.47 we
have two parts:

Problem 7.48. Let κ be an infinite cardinal.

(b) Describe the κ-pseudocompact abelian groups that admit proper dense totally min-
imal κ-pseudocompact subgroups.

(b∗) Describe the κ-pseudocompact abelian groups that admit proper totally dense κ-
pseudocompact subgroups.

The groups considered in (a) are necessarily minimal, and similarly the groups con-
sidered in (b) are necessarily totally minimal. For compact abelian groups (a) coincides
with (a∗) and (b) coincides with (b∗), and we have a complete description given respec-
tively by Theorems 7.15 and 7.21.

In analogy with Problems 7.47 and 7.48, Theorems 7.22 and 7.24 suggest the follow-
ing:

Problem 7.49. Let κ be an infinite cardinal.

(c) Describe the κ-pseudocompact abelian groups that admit proper dense minimal sub-
groups.
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(c∗) Describe the κ-pseudocompact abelian groups that admit proper essential dense
subgroups.

(d) Describe the κ-pseudocompact abelian groups that admit proper totally minimal
subgroups.

(d∗) Describe the κ-pseudocompact abelian groups that admit proper totally dense sub-
groups.

A problem related to Theorem 7.46 about small essential pseudocompact subgroups
of compact abelian groups is to generalize this theorem for non-necessarily abelian
groups:

Problem 7.50. Can ZFC decide whether there exists a compact group admitting some
small essential pseudocompact subgroups?

The difficulty in doing this is to generalize Proposition 7.44. We think that the answer
to this question is negative, since we have proved that it is negative in the abelian case in
Theorem 7.45. Moreover the answer in negative for totally dense subgroups as shown by
Theorem 7.26. It could be convenient to consider first the case when the small essential
pseudocompact subgroups are requested to be also dense. We study this problem in [28].

Another question related to this topic is the following.

Problem 7.51. For κ an infinite cardinal, is it possible to prove the counterpart of
Theorems 7.45 and 7.46 replacing pseudocompact with κ-pseudocompact?

To answer this question it is sufficient to prove the counterpart of Proposition 7.43
for κ-pseudocompact subgroups. The same question can be posed for Theorems 7.26
and 7.27.
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diagonal, 3
essential, vi
infrabasic, 6
pure, 5
small, xiv
strongly totally dense, vi
totally dense, vi

subset
R-independent, 4

Cκ-compact, 23
diagonal, 1
Gκ-dense, 21
Gκ-set, 21
independent, 3
κ-closed, 80
nowhere dense, 29
ω-dense, xi

support, 3

theorem
closed graph theorem, 7
Comfort and Ross theorem, 23
open mapping theorem, 9
Pontryagin duality theorem, 9
structure theorem of locally compact

abelian groups, 9
van Douwen’s theorem, 11

topology
Bohr topology, 11
compact-open, 9
Pκ-topology, 21

w-divisible power, 39
w-divisible product, 39
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2<κ the cardinal sup{2λ : λ < κ}, page 1

∼= algebraically isomorphic, page 3

∼=top topologically isomorphic, page 8

〈S〉 subgroup generated by S, page 3

S
X closure of S in X, page 7

idX identical function of X, page 1

A(S) annihilator of S, page 9

βX Čech-Stone compactification of X, page 7

c cardinality of the continuum, page 2

cf(κ) cofinality of κ, page 1

c(G) connected component of G, page 12

χ(−) character, page 7

d(−) density character, page 7

∆XI diagonal subset, page 1⊕
i∈I Gi direct sum, page 3

G(κ) direct sum of κ many copies of G, page 3

δX discrete topology of X, page 7

eG neutral element of G, page 2

Fp field of p many elements, page 3

Ĝ Pontryagin dual of G, page 9

G̃ completion of G, page 9
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G# G endowed with its Bohr topology, page 11

Γf graph of f , page 7

G[m] {x ∈ G : mx = 0}, page 2

Gp the group
∏
n∈N+

Z(pn), page 12

Hom(G,H) group of all homomorphisms of G to H, page 3

ιX indiscrete topology of X, page 7

κ-clX(Y ) κ-closure of Y in X, page 80

Kp topological p-component of K, page 13

κ+ the minimal cardinal λ such that λ > κ, page 1

Λκ(G) all closed normal Gκ-subgroups of G, page 25

Λ(G) all closed normal Gδ-subgroups of G, page 25

log κ logarithm of κ, page 1

met(K) , page 46

mG {mx : x ∈ G}, page 3

N natural numbers, page 2

N+ positive integers, page 2

nst(K) , page 46

P prime numbers, page 2

P class of Prodanov, page 18

Π(K) d-spectrum of K, page 46

Pκτ Pκ-modification of τ , page 21

π(K) , page 46

π∗(K) , page 46

πf (K) , page 46

πP(K) the set {p ∈ P : Kp 6∈ P}, page 19∏
i∈I Xi direct product, page 1

Gκ product of κ many copies of G, page 3
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Ps(−) , page xi

Ps(−,−) , page xi

ψ(−) pseudocharacter, page 7

Q rational numbers, page 2

R real numbers, page 9

r(−) rank, page 4

r0(−) free rank, page 3

rp(−) p-rank, page 4

rankR(−) R-rank , page 4

rankZp Zp-rank, page 4

ρp(−) generalized Zp-rank, page 13

sc(K) stable core of K, page 46

ΣG Σ-product of G, page 3

ΣκG Σκ-product of G, page 3

Sπ the group
∏
q∈π Z(q), where π ⊆ P, page 12

supp(−) support, page 3

T circle group, page 9

Tp(K) p-component of K, page 13

tp(G) all p-torsion elements of G, page 5

t(G) all torsion elements of G, page 2

w(−) weight, page 7

wd(−) divisible weight, page 35

wsd(−) super divisible weight, page 47

ws(−) stable weight, page 45

XY all functions Y → X, page 1

Z integers, page 2

Z(m) finite cyclic group of order m, page 2

Zp p-adic integers, page 2

Z(p∞) Prüfer group, page 2


