Software modeling with UML

Hyderabad, 9/5/2008 Dr. Andrea Baruzzo

Agenda

Approach and motivations

What is a (software) model

Why do we model? What is UML? Why UML?

UML: not a programming language
Modeling functional requirements
Modeling the system structure
Modeling the system dynamics
Putting all together — a simple case study
Conclusions
Bibliography

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

05/09/2008



Approach and motivations

Practical approach, focusing on technologies
and tools widely accepted and used in
industry
Construction of language-independent
models
Model-Driven Development paradigm

Strong impact in analysis, design, documentation

Growing impact in development (forward-reverse
engineering) and testing

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 3

What is a (software) model?

A simplification of reality
An accurate and possibly partial description of a
system under study at some level of abstraction

A model consists of several submodels describing a
certain view of a system

A model needs not to be complete

A modelis expressed in some language at some level
of language abstraction

A model is more than a description: it is an analogical
representation of the things it models.

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 4

05/09/2008



Why do we model?

Models help us to visualize a system as it is
(or as we want it to be)

Models permit us to specify both the
structure and the behavior of a system
Models give us a template that guides the
entire system construction

Models document the decisions we have
made

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

What is UML?

UML is a modeling
language which unifies
three methods: Booch,
Objectory, OMT

UML is a language for
Visualize,
Specify,
BU”d, |
Document...

.. software artifacts '

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

i) Q“k“;!'-, "14‘, g 4
B UEZ calndss
= =2\

05/09/2008



05/09/2008

What is UML? (cont‘d)

Booch

Rumbaugh Jacobson :
Fusion
Meyer

Before r Opert descr |||'| ions

and afte 5
I rin

conditions \ / viessage nu be g

UNIFIED o Embley

Harel > [ILEHE -
LANGUAGE Singleton classes,

State charts High-level view

Gamma, et.al / / \ Wirfs-Brock

Frameworks, patterns, Responsibilities
notes Shlaer - Mellor Odell

Object Lifecycles Classification

Software quality!
The impact of globalization is changing the
ways in which software is designed.
The one word which best describes the
benefits of UML is communication
A failure to communicate during the development
process can lead to disaster, and a great deal of
money and time may be wasted
UML is independent of methods and
programming languages

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 8




05/09/2008

UML: not a programming language

One of the main goal of UML is to abstract
from the physical machine!

UML speaks about the problem and the
design, conveying only the essential
information for the purpose of the current
diagram

UML provides multiple views of the same
artifact, adapting the level of detail to the
task handles by the modeler

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 9

Agenda

Approach and motivations

Modeling functional requirements
Use case diagrams

Modeling the system structure

Modeling the system dynamics

Putting all together — a simple case study
Conclusions

Bibliography

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo




Use case diagrams

A use case diagram is an excellent way to
communicate to management, customers,
and other non-development people what a
system will do when it is completed
Use case diagrams are used to ...

Model the context of a system

Model the requirements of a system
They provide a user’s perspective of the
system

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

Use cases and actors

A use case is a description of a set of
sequences of actions, including variants, that
a system performs to yield an observable
result of value to an actor

A use case describes what a system does but
it does not specify how it does it

A use case typically represents a major piece
of functionality which provides some value to
the user

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

05/09/2008



Use cases and actors (cont’d)

A use case is a description of a scenario (or
closely related set of scenarios) in which the
system interacts with its users

Use cases are described as both narrative
scenarios and graphical models

They can also be refined by class diagrams
and interaction diagrams (to be discuss later)

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 13

Use cases and actors (cont’d)

An actor is anyone or anything that must
interact with the system

Actors are NOT part of the system

In the UML, a use case is represented as an
oval, whereas an actor is represented as a
stickman

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 14

05/09/2008



05/09/2008

Associations between actors and

use cases

An association between an actor and a use
case indicates that the actor and the use case
communicate with one another, each one
possibly sending and receiving messages.

uc Use Case View /

i Use Casel
Actorl

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

Dependency relations between use

cases

include

Specifies that the source use case explicitly
incorporates the behavior of another use case at a
location specifies by the source.

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 16




Dependency relations between use

cases (Cont’d)

extend

Specifies that the target use case extends the
behavior of the source use case, adding an
exceptional custom logic at a location specifies by
the source.

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

Dependency relations between use

cases (Cont’d)

Extend (cont'd)
Extension points and conditions

ud Extend [with Condition)

Condition: {customer selected HELF}
Extension point: selecion

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

05/09/2008



05/09/2008

Dependency relations between use

cases (Cont'd)

Generalization

Specifies hierarchies of actors (the classical
inheritance relation)

Customer Commercial Customer

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 19

System boundary
It is usual to display use cases as being inside
the system and actors as being outside the
system
ud System Boundary
Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

10



Use case diagram example

<<inc|ude>a/’/ \ \\\\<\<\include>>
L <<inc|ude>>‘\\ According to
customer
o demand
(extend
condition)
Pay with card
Functionalities
always
included High level use case
describing payment
capability
Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 21

Agenda

Approach and motivations
Modeling functional requirements

Modeling the system structure

Class diagrams basics

Modeling the system dynamics

Putting all together — a simple case study
Conclusions

Bibliography

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 22

05/09/2008

11



What is a class diagram?

A class diagram describes the types of objects
in the system and the various kinds of static
relationships that exist among them
A graphical representation of a static view on
static elements
A central modeling technique that is based on
object-oriented principles
The richest notation in UML

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 23

Essential elements of a class

diagram

Classes (obviously!)
Attributes
Operations
Relationships
Associations
Generalization
Dependency
Realization
Constraint Rules and Notes

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 24

05/09/2008

12



Classes

A class is the description of a set of objects
having similar attributes, operations,
relationships and behavior

Class
Name g Window
size: Integer
visibility: Boolean

display()
Operations hide()

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 25

Associations

A semantic relationship between two or more
classes that specifies connections among their
instances

A structural relationship, specifying that objects of
one class are connected to objects of a second
(possibly the same) class

Example: "An Employee works in a department of a
Company”

Employee Department Company

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 26

05/09/2008

13



Associations (cont'd)

05/09/2008

Hyderabad, 9/4/2008

Dr. Andrea Baruzzo

An association between two classes indicates
that objects at one end of an association

“recognize” objects at the other end and may
send messages to them

This property will help us discover less trivial
associations using interaction diagrams

27

Associations (cont'd)

StaffMember

Role
name

instructor

Association
name

Hyderabad, 9/4/2008

1..%

Multiplicity

Dr. Andrea Baruzzo

. Vv
instructs *

Student

Navigable
(uni-directional)
association

*

Cou

rses

Role

pre -
requisites

Reflexive
association

0.3

28

14



Associations (cont'd)

To clarify its meaning, an association may be named

The name is represented as a label placed midway along
the association line

Usually a verb or a verb phrase

Arole is an end of an association where it connects
to a class.
May be named to indicate the role played by the class
attached to the end of the association path
Usually a noun or noun phrase
Mandatory for reflexive associations

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 29

Associations (cont’d)

Multiplicity
The number of instances of the class, next to
which the multiplicity expression appears, that
are referenced by a single instance of the class
that is at the other end of the association path.

Indicates whether or not an association is
mandatory.

Provides a lower and upper bound on the number
of instances.

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 30

05/09/2008

15



Associations (cont'd)

Multiplicity Indicators

Exactly one 1
Zero or more (unlimited) *(0..%)
One or more 1.*
Zero or one (optional association) 0.1
Specified range 2.4
Multiple, disjoint ranges 2,4.6,8

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 31

Aggregation

A special form of association that models a
whole-part relationship between an
aggregate (the whole) and its parts.

Models a “is a part-part of” and “holds/contains”
relationships

Examples: car-door; house-door; hangar-airplane

2..% 1..%
Car K—— Door ———"— House

Whole Part

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 32

05/09/2008

16



Aggregation (cont’d)

Aggregation tests:
Is the phrase “part of” used to describe the relationship?
A door is “part of” a car
Are some operations on the whole automatically applied
to its parts?
Move the car, move the door.
Are some attribute values propagated from the whole to
all or some of its parts?
The car is blue, therefore the door is blue.
Is there an intrinsic asymmetry to the relationship where
one class is subordinate to the other?
A door is part of a car. A car is not part of a door.

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 33

Composition

A strong form of aggregation
The whole is the sole owner of its part
The part object may belong to only one whole
Multiplicity on the whole side must be zero or one
The life time of the part is dependent upon the whole

The composite must manage the creation and destruction of its

pa rts
. 1 . H
Circle @———=— Point Circle
Point
*
Polygon @ 3
Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 34

05/09/2008

17



Composition vs. Aggregation

Quite often, “part of” (“is composed of/by”) is best
suited for composition, whereas aggregations are
best described by “contains”, “holds”, “*has a”

Not always simple to discriminate
A car “is composed” of doors or it “contains” doors?

Don't spend a lot of time struggling with these
details...

Aggregation and composition describe forms of
containment: recognize it and distinguish it from
other types of relations!

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 35

Generalization

Indicates that objects of the specialized class
(subclass) are substitutable for objects of the
generalized class (super-class).

“is kind of” relationship

{abstract}isa absAt\:act Shape Super
tagged value that class {abstract} Class
indicates that the

class is abstract. Generalization F %

The name of an relationship S0b

abstract class should Circle % dEe

be italicized

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 36

05/09/2008

18



Generalization (cont'd)

A sub-class inherits from its super-class
Attributes
Operations
Relationships

A sub-class may
Add attributes and operations
Add relationships
Refine (override) inherited operations

A generalization relationship may not be used to
model interface implementation

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 37

Realization

A realization relationship indicates that one
class implements a behavior specified by
some interface

An interface can be realized by many classes
A class may realize many interfaces

<<interface>>

LinkedList {--------- >

LinkedList —(O List

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 38

05/09/2008

19



Dependency

A dependency indicates a semantic relation
between two classes although there is no explicit
association between them

A stereotype may be used to denote the type of the
dependency

friend
lterator  [------"10- Vector

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 39

Constraint rules and notes

Constraints and notes annotate among
other things associations, attributes,
operations and classes.

Constraints are semantic restrictions noted as
Boolean expressions.

worker . employee employer -
o.1| Person * 0.1 | Company

boss
constraint in a note [
ines to the affected class| {self.employer =
self boss.employer}

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 40

05/09/2008

20



Constraints are used for...

Document assumptions (concerning
analysis, design or implementation aspects)
Describe invariants
Design by contract :
Invariant : is always true for an object
Pre-condition : is true when method is called
Post-condition : is true after method is called

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 41

Stereotypes

Extend the UML using the << ... >> notation
e.g. Classes can be

<<Interface objects>>

<<Control objects>>

<<Entity objects>>

Patterns
e.g. <<singleton>>

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 42

05/09/2008

21



05/09/2008

Packages

A package is a general purpose grouping
mechanism.

Commonly used for specifying the logical
architecture of the system.

A package does not necessarily translate into

a physical sub-system.
Name

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 43

Package diagrams

class DigitalPlatformkernel /
- SearchSubsystem
E
g SCRLERERE
E
E
s Je of packages packages
E ) -
Ordering - :
| —
package | Userinterface [ - - - - — GUIManager
1
J——
_____ Order h
Processing|
| |
S A s S A —
Price External T
Storage | = Storage
Calculator g Management
Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 44

22



Packages in use case diagrams

uc Top-Level Use Case Workpackages /

Digital Platform Services

+ Administration Services

+ Publishing Services

+ Search and Filtering Services

+ Use administration senvices

+ Use publishing services

+ Use search and filtering services

Use administration
services

(fromngi/aj Pia ormsb\Qes)

Use search and

(fromDigital PlatformServices)

Use publishing
services

yﬁjgi?/ PlatfolnSenvices)

filtering services

User

(fromActors)

P

Publisher

(fromActors)

Platform Admin Project Head

(fromActors) (fromActors)

TS T
0 Y

Workgroup Head

(fromActors)

Content Editor

(fromActors)

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

45

Packages in class diagrams

ResourceProxies

-t=m

ArchiveProxy

1 Archiveltem
{sbstract)

~docColection [\ -

temProxy
archiveProx,
1
PlatiormRole
{sbstract}

ProjectProxy

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

46

05/09/2008

23



Modeling tips

Don’t try to use all the various notations

Don’t draw models for everything,
concentrate on the key areas

Draw implementation models only when
illustrating a particularimplementation
technique

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 47

Agenda

Approach and motivations
Modeling functional requirements
Modeling the system structure

Modeling the system dynamics
Sequence diagrams
Other interaction diagrams

Putting all together — a simple case study
Conclusions
Bibliography

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 48

05/09/2008

24



Interaction diagrams

An interaction diagram models communication behavior
of individuals exchanging information to accomplish
some task
Sequence diagram—shows interacting individuals along the
top and message exchange down the page

Communication diagram—shows messages exchanged on a
form of object diagram

Interaction overview diagram—a kind of activity diagram
whose nodes are sequence diagram fragments

Timing diagram—shows individual state changes over time

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 49

Sequence diagrams

Sequence diagrams are useful for modeling
Interactions in mid-level design;

The interaction between a product and its environment
(called system sequence diagrams);

Interactions between system components in architectural
design

Sequence diagrams can be used as (partial) use case
descriptions

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 50

05/09/2008

25



05/09/2008

Sequence diagram frame

Frame—a rectangle with a pentagon in the upper
left-hand corner called the name compartment.
<sd interactionldentifier>

<interactionldentifier> is either a simple name or an
operation specification as in a class diagram

sd findWebPageJ sd rotate( in degrees :int) : BoundingBoxJ

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 51

Lifelines

Participating individuals are arrayed across
the diagram as lifelines:

Rectangle containing an identifier

Dashed line extending down the page
The vertical dimension represents time; the
dashed line shows the period when an
individual exists

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 52

26



Lifeline creation and destruction

An new object appears at the point it is created.

A destroyed object has a truncated lifeline ending in an X.
Persisting objects have lifelines that run the length of the
diagram

sd UseComponent J

client supplier
| |

I create
L —“——-3{ :Component

destroy

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 53

Messages and arrows

Synchronous—The sender
suspends execution until the -
message is complete

Asynchronous—The sender N
continues execution after
sending the message

Synchronous message return =~ - >
or instance creation

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 54

05/09/2008

27



Message arrow example

sd Findltem

client

searcher

find(description)

:/foundMatch(description) :

gl

fetch(description)

|

> clone(item)
= > result

Hyderabad, 9/4/2008

Dr. Andrea Baruzzo

55

Execution occurrences

Hyderabad, 9/4/2008

Dr. Andrea Baruzzo

An operation is executing when some process is
running its code.
An operation is suspended when it sends a
synchronous message and is waiting for it to return.
An operation is active when it is executing or
suspended.
The period when an object is active can be shown
using an execution occurrence.

Thin white or grey rectangle over lifeline dashed line

56

05/09/2008

28



Execution occurrence example

|

sd ButtonPress

:User :Button :ButtonListener :Light

| | |

press _ | ( |
( |
|

|

actionPerformed(event) |

toggle

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

57

Combined fragments

A combined fragment is a marked part of an
interaction specification that shows
Branching,
Loops,
Concurrent execution,
And so forth

It is surrounded by a rectangular frame.
Pentagonal operation compartment
Dashed horizontal line forming regions holding operands

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

58

05/09/2008

29



Combined fragment layout

sd Example
operator
imen L= e | [ -
compartment : : :
T T T
operatorJ | m1 | |
. f el |
combined | | m2
fragment | I |
| | |
F————— - Fo—————— +——
| | |
o I m3 I I
perand e ] |
regi
gion [ m2 [ [
L | =I
] ! ]
| | |
| m4 | |
.
f t »
| | |
Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 59

Optional fragment

A portion of an interaction that may be done
Equivalent to a conditional statement
Operator is the keyword opt
Only a single operand with a guard

A guard is a Boolean expression in square brackets
in a format not specified by UML.

[else] is a special guard true if every guard in a fragment is
false.

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 60

05/09/2008

30



Optional fragment example

sd print( f : File )J

self:PrintServer f:File :Printer

isCmprsd=isCompressed() ‘é

opt | [isCmprsd]

decompress()

print(f)

]

h 4
I PR ¥ oy, R

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 61

Alternative fragment

A combined fragment with one or more
guarded operands whose guards are mutually
exclusive
Equivalent to a case or switch statement
Operator is the keyword alt

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 62

05/09/2008

31



Alternative fragment example

sd toggle()

self:Light :Bulb

T
alt | [state==on]

turnOff()

- — —

turnOn()

v
_—t - ——

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 63

Break fragment

A combined fragment in which an operand
performed in place of the remainder of an
enclosing operand or diagram if the guard is
true

Similar to a break statement

Operator is the keyword break

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 64

05/09/2008

32



Break fragment example

sd print( f : File )

|se|f:PrintServer | | stderr | | f:File | | :Printer|

readable=canRead()
T

y

T
|
|
1 |
break | [treadable] ! ! !
print(errMsg) ! : :
’ | |
i | |
. ! | |
isCmprsd=isCompressed() | |
»
T 'g |
| |
- T T |
opt [isCmprsd] I | |
| | |
decompress() | [} [}
1 > |
| D |
] | |
print(f) ! : |
| | >ﬂ
Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 65

Loop fragment

Single loop body operand that may have a
guard

Operator has the form loop( min, max) where

Parameters are optional or omitted, so are the
parentheses

min is a non-negative integer

max is a non-negative integer at least as large as
min or *; max is optional; if omitted, so is the
comma

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 66

05/09/2008

33



Loop fragment execution rules

The loop body is performed at least min times and
at most max times.

If the loop body has been performed at least min
times but less than max times, it is performed only if
the guard is true.

If max is *, the upper iteration bound is unlimited.

If min is specified but max is not, then min=max.

If the loop has no parameters, then min=0 and max
is unlimited.

The default value of the guard is true.

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 67

Loop fragment example

3times | 0oR(13) ) (hacoword not valid) Suad conditio
enter (password) _
 valid fylpassword
i
sd lteration
controller ‘ o0:Object ‘ ‘ :Collection ‘

] T

i = iterator() | o

T »

- ] create
e
|
isMore = hasNext() | [} [}
| | |
1 |
| isM | | |
oop | [isMore] 0 = next() H H
| | |
process() H " :
) | 'U 1
isMore = hasNex{() ] |
| | |
1 |
ot | |
estroy :
X | 1
| |
Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 6

05/09/2008

34



Modeling tips

Put the sender of the first message leftmost.
Put pairs of individuals that interact heavily
next to one another.

Position individuals to make message arrows
as short as possible.

Position individuals to make message arrows
go from left to right.

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 69

Modeling tips (Cont’d)

Put the self lifeline leftmost.

In a sequence diagram modeling an operation
interaction, draw the self execution
occurrence from the top to the bottom of the
diagram.

Name individuals only if they are message
arguments or are used in expressions.

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 70

05/09/2008

35



Modeling tips (Cont’d)

Choose a level of abstraction for the
sequence diagram.

Suppress messages individuals send to
themselves unless they generate messages to
other individuals.

Suppress return arrows when using execution
occurrences.

Don’t assign values to message parameters
by name.

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 71

Other UML diagrams

Different nature
Behavioral: describes behavior of things
Structural: describes organization of things
Dynamic nature: describe flow of time
Static: the time notion is frozen

Behavioral nature Structural nature
Static nature Use Case Diagram Package Diagram
Activity Diagram Class Diagram
Interaction Overview Diagram | Deplovment Diagram
Component Diagram
Dvnamic State Machine Diagram Object Diagram

nature

Sequence Diagram Composite Structure Diagram
Communication Diagram

Timing Diagram

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 72

05/09/2008

36



Activity diagrams

S A—

sell ticketsj

Hyderabad, 9/4/2008

publicize show _ .
buy scri hire

pickshow | (activity)
schedule show

(fork)

pts build design
and music artists sets lightin

rehearse \T
(join) rehearsal
perform

Dr. Andrea Baruzzo

(completion

73

Activity diagrams (Cont’d)

Hyderabad, 9/4/2008

" Assign |
seats

l

Charge |
credit card |

gecsion ¢
Itoday < 7 days beroyﬁwidays before show]

| Holdin Mail
| will-call tickets

|

(" Customer | /
picks up

\__ ticket

“Customer |
attends
. show }

Dr. Andrea Baruzzo

74

05/09/2008

37



State-chart diagram

[ Waiting

receive order

[amount > $25] wransition

transition

receive order =

Process Order

\ Confirm Credit ) approved/debit a
I

rejected event
transition

Cancel Order

ccount() L
A

[amount < $25]

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

75

Agenda

Modeling the system
Modeling the system

Conclusions
Bibliography

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

Approach and motivations
Modeling functional requirements

structure
dynamics

Putting all together — a simple case study

76

05/09/2008

38



Videogame case study

Live demo with Enterprise Architect
modeling tool
Use case diagrams for requirements
Class diagrams for system structure

Sequence diagrams, state diagrams and activity
diagrams for system dynamics

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo

77

Agenda

Approach and motivations

Modeling functional requirements
Modeling the system structure

Modeling the system dynamics

Putting all together — a simple case study
Conclusions

Bibliography

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 78

05/09/2008

39



Conclusions:

tenets of Model-Based development

Start quick vs. start right!
UML modeling as a knowledge crunching
process
What knowledge?
The knowledge of the problem domain
The knowledge recognizable in user requirements
(explicit, but especially implicit ones!)
How can I hope to build a useful system if | do not
know what | have to build and why?

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 79

Bibliography

The Unified Modeling Language User Guide 2/E
G. Booch, J. Rumbaugh, I. Jacobson - Addison-Wesley, 2005

The Unified Modeling Language Reference Manual 2/E
J. Rumbaugh, I. Jacobson, G. Booch - Addison-Wesley, 2004

UML Distilled 3/E
M. Fowler - Addison-Wesley, 2003

Applying UML and Patterns

C. Larman - Addison-Wesley, 2004

UML Bible
T. Pender —Wiley&Sons, 2003

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 80

05/09/2008

40



Thank you!

Dr. Andrea Baruzzo
University of Udine, Computer Science Dept.
Artificial Intelligence Laboratory
Office: 2nd floor, room SSSH
Via delle Scienze 206, Loc. Rizzi
33100 Udine, ITALY

Phone: +39 0432 55.84.35
Fax: +39 0432 55.84.99 S
E-mail: andrea.baruzzo(at)dimi.uniud.it

http://users.dimi.uniud.it/~andrea.baruzzo/

Hyderabad, 9/4/2008 Dr. Andrea Baruzzo 81

05/09/2008

41



