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Preface

Bioinformatics is a challenging research area where every major contribution
can have significant impact on medicine, agriculture, and industry. Among the
various problems tackled in this area are those related to the recognition, anal-
ysis, and organization of DNA sequences, those related to the structure of
macromolecules (like the prediction of the spatial form of a polymer, given
the sequence of monomers constituting it, or the detection of common RNA
sequence/structure motifs), and those related to biological systems simulations
(for metabolic or regulatory networks). All these problems can be naturally for-
malized using constraints over finite domains or intervals of reals. Moreover, Bi-
ological systems simulations can be easily designed using concurrent constraint
programming.

The main aim of this workshop is to share recent results in this area (new
constraint solvers, new prediction programs) and to present new challenging
problems that can be addressed using constraint-based methods. Among the
papers submitted, nine of them have been judged deserved to be presented to
the workshop.

We would like to thank the program committee and external referees for their
contribution in reviewing the submitted papers. A special thank to Alessandro
Dal Palù who greatly helped us in the editing process.

Rolf Backofen
Agostino Dovier
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RNA Secondary Structure Design Using
Constraint Handling Rules

Maryam Bavarian and Veronica Dahl

Logic and Functional Programming Group
Dept. of Computing Science

Simon Fraser University
Burnaby, B.C., Canada

Abstract. The need for processing biological information is rapidly
growing, owing to the masses of new information in digital form be-
ing produced at this time. Old methodologies for processing it can no
longer keep up with this rate of growth. We present a novel method-
ology for solving an important bioinformatics problem which has been
proved to be computationally hard: that of finding an RNA sequence
which folds into a given structure. Previous solutions to this problem
divide the whole structure into smaller substructures and apply some
techniques to resolve it for smaller parts, which causes them to be slow
while working with longer RNAs (more than 500 bases). We prove that
by using a set of simple CHR rules we are able to solve this problem and
obtain approximate but still useful solution in O(n) time. We expect
the results we present to be applicable, among other things, to in vitro
genetics, by enabling the scientists to produce RNAs artificially from se-
quences; and to drug design, which typically progresses backwards from
proteins to RNAs and finally to DNAs.

Keywords: RNA secondary structure, RNA secondary structure design, con-
straint handling rules, Watson-Crick base pairs.

1 Introduction

Over the past decade there has been a dramatic increase of collection rates
for biological data, making the need for resorting to AI methods even more
acute. Simultaneously, the intersection between logic programming and con-
straint reasoning has been maturing into extremely interesting methodologies,
most notably Constraint Handling Rules, or CHR [15,16]. We have applied these
methodologies first to human language processing, through implementing Prop-
erty Grammars (a linguistic formalism based on constraints between sentence
constituents rather than on the traditional notion of phrase structure [6,8]) in
CHR [11], and through a parsing system for balanced parenthesis [7] and then
to cognitive sciences, through generalizing these results into a general cognitive
theory of concept formation [13] with applications to cancer diagnosis [5,4], to
medical report interpretation [27] and to concept extraction [12].
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The application to molecular biology of AI methods such as logic program-
ming and constraint reasoning constitutes a fascinating interdisciplinary field
which, despite being relatively new, has already proved quite fertile. Some ex-
amples of applying logic programming techniques to molecular biology prob-
lems are the description and analysis of protein structure [24], protein secondary
structure prediction [23], drug design [19] and predicting gene functions [18].

In this paper, we present a novel methodology for solving one of the state-
of-the-art problems in biology which is the problem of RNA secondary structure
design namely finding an RNA sequence which folds into a given structure.
Using the power beneath Constraint Handling Rules and adding some heuristics
enabled us to solve this problem in linear time.

In the following sections, we first provide some background knowledge about
the biological concepts involved. Next, we present a set of grammar rules for
RNA secondary structure prediction first introduced in [3] and based on these
rules we present our own solution for the inverse problem, namely RNA sec-
ondary structure design through CHR rules. Then we go through our results
and compare them with other existing methods, and finally, we discuss possible
future work and improvements to our system.

2 Background

2.1 Biological Concepts Invovled

RNA (ribonucleic acid) is a chemical found in cells which codes for amino acid se-
quences, serving as intermediate in the synthesis of protein1. Each RNA molecule
is made up of four different compounds called nucleotides, each noted with one of
the letters A (Adenine), C (Cytosine), G (Guanine) and U (Uracil). This strand
of nucleotides is folded onto itself by pairings of the nucleotide A with U and C
with G which are called Watson-Crick or canonical base pairs. Pairing also might
happen between G and U but this is not very frequent. The nucleotides are often
referred to, as bases and each pairing is called a base pair. The structure made
by these base pairs is called RNA secondary structure which contain a number
of structural patterns such as helix, hairpin loop, bulge loop and internal loop,
etc (Figure 1).

One of the widely occurring structural motifs in RNAs is called pseudoknot
which has been proved to play an important role regarding the functions of RNA.
A simple pseudoknot is formed by pairing of some of the bases in a hairpin loop
that are supposed to stay unpaired, with bases outside the loop (Figure 2).
Adding generalized pseudoknots to the problem of RNA secondary structure
prediction makes it NP-hard. however, by using some heuristics and restrict-
ing the format of pseudoknots, this problem can be solved in polynomial time
(O(n4)) [14]. Most methods that predict RNA secondary structure, for simplic-
ity, disregard the possibility of having pseudoknots. According to these methods,
for every two base pairs: pair(i, j) and pair(i1, j1), if i1 is greater than i then j1

1www.nigms.nih.gov/news/science\_ed/chemhealth/glossary.html
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Fig. 1. Common motifs in RNA secondary structure are: hairpin loop, bulge loop,
internal loop, etc.

should be less than j. This assumption prevents the formation of pseudoknots
in the result structure.

The problem of RNA secondary structure prediction consists of determining
which secondary structure will be adopted by a given sequence of nucleotides.
Several methods have tackled this problem so far within two main approaches.
The two most common approaches include finding minimum free energy [29] and
sequence comparison [20,17].

Fig. 2. A simple pseuodoknot

In this paper we focus on the problem of RNA secondary structure design, i.e.:
given a secondary structure, we find a sequence which folds onto that structure.
The motivations for solving this problem include the achievements made in in
vitro genetics (done outside the living organism) field. Nowadays, scientists are
capable of replicating any RNA in a test tube [9] which would eventually help
in finding new paths for drug design or can have industrial use [2].

The RNA-SSD algorithm [2] by Andronescu et al. and RNAinverse from
Vienna RNA package [26] have addressed the same problem. The RNA-SSD is
based on stochastic local search procedure (SLS). This algorithm first assigns
an initial sequence by using these probabilities: PG = PC , PA = PU = 1/2−PC .
Next, it divides the structure into smaller substructures and then applies the SLS
procedure on those substructures. After combining the substructures, as they are
not independent from each other, the SLS procedure should be applied again.
RNAinverse also initializes the sequence but for each step instead of applying
SLS procedure, it will change a base randomly and then computes the free energy
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for the result. If the free energy of the new sequence is reduced, it accepts the
new sequence otherwise the change is not accepted. These two algorithms assume
that there are no pseudoknots in the initial structure.

2.2 Constraint Handling Rules

Constraint handling rules (CHR) provide a simple bottom-up framework which
has been proved to be useful for algorithms dealing with constraints [15,16].
Because logic terms are used, grammars can be described in human-like terms
and are powerfully extended through (hidden) logical inference. The format of
CHR rules is:

Head ==>Guard|Body

Head and Body are conjunctions of atoms and Guard is a test constructed
from (Prolog) built-in or system-defined predicates. The variables in Guard and
Body occur also in Head. If the Guard is the constant “true”, then it is omitted
together with the vertical bar. Its logical meaning is the formula (Guard →
(Head → Body)) and the meaning of a program is given by conjunction. There
are three types of CHR rules:

– Propagation rules, which add new constraints (body) to the constraint set.
– Simplification rules ,which also add as new constraints those in the body,

but remove as well the ones in the head of the rule.
– Simpagation rules, which combine propagation and simplification traits, and

allow us to select which of the constraints mentioned in the head of the rule
should remain and which should be removed from the constraint set.

The rewrite symbols for the first two rules are respectively: ==>, <=> and for sim-
gation rules, the notation is Head1\Head2<=>body. Anything in Head1 remains
in the constraint set and anything in Head2 is removed from the constraint set.

3 Our solution: chrRNA

To solve the problem of RNA secondary structure design, we made use of a set of
simple Context Free grammar rules proposed in [3] for RNA secondary structure
prediction:

S → cSg|gSc|aSu|uSa|gSu|uSg

S → aS|gS|uS|cS

S → a|g|u|c

S → SS

This set of relatively simple rules present a profound insight of the secondary
structure of RNAs and have been used as a basis for some RNA secondary
structure prediction algorithms [3]. However, the grammar generated by this set
of rules is ambiguous and the reason for ambiguity is that there might be more
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than one derivation for the same sequence, e.g. for the short sequence cccg, we
have:

S ⇒ cS ⇒ ccSg ⇒ cccg

S ⇒ cSg ⇒ ccSg ⇒ cccg

We use CHR to implement this grammar in order to exploit the bottom-up
characteristic of CHR rules, as well as keep track of ambiguous readings with no
special overhead.

At the first step, we translated these rules into the format of CHR rules,
adding only one extra rule to this set which ascertains that the bases right after
a loop would not be able to be paired together. In our system the structure of
the desired RNA (input data) is shown in the format of CHR constraints, e.g.
for expressing that the base number 1 and the base number 43 in the sequence
are paired together, we add the constraint pair(1,43) or if base number 3 is
unpaired, the corresponding constraint would be upair(3). One advantage of
our input format to the input format used by RNAinverse and RNA-SSD is that
it is capable of accepting pseudoknots in the input structure.

After constructing the CHR rules, the problem becomes that of assigning
nucleotides to each position given the input constraints. One trivial solution is:
randomly assign one of the Watson-Crick pairs (or GU pair) to each base pair
and one of the four nucleotides (A, C, G and U) to the unpaired bases.

The problem with the random solution is that, although we follow the struc-
ture to build the sequence, since there is no preference criteria to select between
the existing pairs, we might end up with a sequence that may not actually fold
into the input structure. As mentioned earlier, the number of GC pairs has an
important role in stabilizing a certain structure. For instance, if we assign base
G to position 1 and base U to position 43 and if we have a base C in position
42, in the end, the structure might be pair(1,42) instead of pair(1,43).

The solution we offer to this problem uses CHR rules combined with the
probabilities that are believed to govern the proportion of base pairs within
RNA sequences. We calculated these probabilities by comparing several RNAs
together from Gutell lab’s comparative RNA website [10], a database of known
RNA secondary structures. After comparing 100 test cases with various length
from 100 to 1500 bases, we found the following probabilities for each base pair:

PCG = 0.53, PAU = 0.35, PGU = 0.12

The other probabilities which are of interest are the probabilities for an un-
paired base to be one of A, C, G, or U . The results are as follows:

PG = 0.18, PA = 0.34, PC = 0.27, PU = 0.20

There is a simple explanation for the above probabilities. Base G can be
paired with both base C and base U and as the number of GC pairs is important
for RNA stabilization, the probability of an unpaired base to be base G would
become smaller. Base U is not as important as base G for stabilization but still
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can be paired with both base G and base A and that is why it has the second
smallest probability to stay unpaired. Both base A and base C can only be paired
with one nucleotide but as most base C’s tend to be paired with base G’s, the
probability of an unpaired base to be base C would become less than base A.

3.1 Adding the probabilities

Inserting the probabilities into the rules is the most challenging part of the imple-
mentation. In our implementation, it is done by generating a random variable
in the guard section of the rules, which is the only part that accepts Prolog
predicates. This random variable then is tested according to the probabilities:
for instance for the following rule if the random variable I is less than 0.53, it
will assign a GC pair to pair(X1,Y1). The L parameter in s contains the list of
bases already added to the sequence and find(M,N,I) assigns a base pair to M

and N based on the random variable I.

pair(X1,Y1)\s(X,Y,L)<=>X1 is X-1,Y1 is Y+1,random(I),find(M,N,I),

append([X1:M,Y1:N],L,L1) | s(X1,Y1,L1).

As mentioned before, the other two algorithms do not accept pseudoknots
in the input structure. However, our implementation provides the capability of
handling structures with pseudoknots through the following rule. This rule finds
pairs of nucleotides which do not meet the assumption made by common methods
of RNA secondary structure prediction (section 2.1) and separates them into
two strings and at the same time, according to the probabilities, assigns them
one of the possible base pairs.

pair(X,Y)\pair(X1,Y1)<=> X < X1, X1 < Y, Y1 > Y,random(I),

find(M,N,I)| s(X1,X1,[X1:M]),s(Y1,Y1,[Y1:N].

4 Results and comparisons

We have tested the chrRNA program with 100 RNA secondary structures (not
containing pseudoknots) from the Gutell database [10]. The test cases were se-
lected from both Prokaryote (Archaea and Bacteria) and Eukaryote. The results
show that although the chrRNA program seems relatively simple compared to
RNA-SSD and RNAinverse, it is still comparable in efficiency and even better
in some cases.

For evaluation, firstly we transform the secondary structure of each test case
to constraint format by using a Java based program and then run the chrRNA
program for each of those. Using the probabilities makes the result of each run
on a test case to be a completely new sequence. The sequence produced by
chrRNA is then fed into an RNA folding server [28] and the output would be the
structure of this new sequence. The two structures (the initial input structure
and the output structure of the RNA folding server) are then compared together
and the differences are marked.
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The average error is estimated to be about 18%, meaning that 18% of the
nucleotides might be paired with a nucleotide in a wrong position (in the original
structure they might be either unpaired or be paired with another nucleotide).
We have compared the performance of our program with two available software
systems: RNA-SSD and RNAinverse. RNA-SSD has been implemented [1] and
is available online2 through a web application and RNAinverse is one of the
programs inside Vienna RNA package3.

RNAinverse and chrRNA were both executed on a Pentium 1.4GHZ Centrino
with 512MB of RAM. Table 1 shows the results of the comparisons between
chrRNA, RNAinverse and RNA-SSD based on their response time and accu-
racy (the results are divided according to the length of RNA sequences4). For

Algorithm Error Time

chrRNA 16% 2–5sec
a) RNAinverse 1.6% 2–900sec

RNA-SSD 0% 2–3600sec

chrRNA 18% 5–7sec
b) RNAinverse 2.2% 900–1800sec

RNA-SSD – no answer

chrRNA 19% 7–300sec
c) RNAinverse – no answer

RNA-SSD – no answer
answer

Table 1. Comparison between chRNA, RNA-SSD, and RNAinverse: a) for sequences of
less than 300 bases, b) sequences between 300 and 500 bases and c) sequences between
500 and 1500 bases

sequences longer than 500 bases, RNAinverse run time seems to be increasing
exponentially, e.g. for a sequence consisting of 500 bases, the run time was 30
minutes while for a 700 base sequence, it took 7 hours to finish. In contrast, for
chrRNA the run time only varies in the order of seconds. The reason for such a
difference between the expected running time of chrRNA and that of the other
two algorithms is that in chrRNA we have only used rules which are executed
linearly (O(n)) and there are no time consuming computations. The compar-
isons show that although for shorter RNAs (less than 500 bases), RNA-SSD and
RNAinverse produce more accurate results than the results by chrRNA and the
total run time is quite insignificant, however they fail to produce even a rough
answer for longer sequences. According to this, it can be concluded that chrRNA

2http://www.rnasoft.ca
3http://www.tbi.univie.ac.at/\char126ivo/RNA/
4As indicated above, RNA-SSD is only available as a web application and was not

able to give any answer for sequences longer than 300 bases within their time limit.

7



outperforms the other two for longer sequences by giving an approximate but
still useful result within an acceptable amount of time.

5 Discussion and future work

We implemented an elegantly simple while powerful system based on CHR rules
to predict RNA secondary structure design. According to the results, the two ex-
isting methods, RNA-SSD and RNAinverse, generate more precise results while
designing shorter sequences by utilizing other non trivial rules such as energy
rules into their methods which are not very easy to implement in our case of CHR
rules. However, our method performs better when dealing with longer sequences,
given that we do not need to break the initial structure into substructures, which
for longer sequences results in either slowdown or failure. In addition to this, the
capability of handling pseudoknots, makes this system more powerful in com-
parison to the other existing methods.

For improving our program, we are currently trying to add more rules to the
limited set of trivial rules introduced in Section 3 . These rules find the positions
inside the structure that might lead to error and solve them by assigning new
bases. Some of these conditions are shown in Figure 3. These rules have improved
our program for sequences of less than 300 bases from 16% error rate to 8%.

Fig. 3. Conditions to avoid

Another future improvement to our method would consist in also incorporat-
ing more non-trivial rules which are not easy to predict, through some machine
learning methods such as Inductive Logic Programming (ILP) [21]. ILP is a rel-
atively new methodology of automatically eliciting hidden knowledge with the
help of a computer [22]. ILP has already been used in molecular bioinformatics
[25]. Some examples of this application include gene function prediction [18],
protein secondary structure prediction [23] and drug design [19]. By using this
methodology and adding new rules, this system could probably show better re-
sults for shorter sequences as well as for longer ones.

We expect the results presented here to be invaluable for in vitro genetics, by
enabling the scientists to produce RNAs virtually from sequences; and for drug
design, which typically progresses backwards from proteins to RNAs to DNAs.
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Abstract. We explore the possibility of designing a constraint-based
algorithm for constructing subsets of DNA words satisfying given con-
straints (the so-called DNA word design problem). In this direction, we
use symbolic representation of sets of strings, and define a propagation
algorithm on these representations. Some preliminary results are pre-
sented, together with several open problems.
Keywords: DNA word design, Code Construction, Constraint Program-
ming.

1 Introduction

In the last ten years, a new computational paradigm emerged from a very un-
common place, i.e. wet labs of biologists. The fact that DNA contains all the
basic information necessary to build very complex living organisms convinced
Adlemann that it could also be used as a computational entity. In his milestone
paper of 1994 [1], he proposed a computational model based on very simple ma-
nipulations of DNA that can be performed in a wet lab. This model is Turing-
complete and bases its power on the massive parallelism achievable by using
DNA. Moreover, one of the basic operations performed is the hybridization of
complementary DNA strings. Specifically, DNA strings are oriented strings over
the alphabet Σ = {a, c, g, t}, where a-t and c-g are complementary letters. Two
of such strings are said to be complementary if they have the same length and if
one can be generated by reversing the other and complementing each of its let-
ters. Physically, complementary DNA strings can hybridize, i.e. they can attach
one to the other, forming the famous double helix. Actually, hybridization can
occur also between strings that are not perfect complements, but close to it. In
DNA computations, data is coded by short strings of DNA in such a way that
hybridizations occurring determine the output of the “algorithm” [8]. Therefore,
one of the main concerns is to avoid that “spurious” hybridizations occur, leading
straight to the so-called DNA word design problem.

DNA word design (cf. [7]) consists of identifying sets of DNA strings of a
given length, called DNA codes, satisfying some constraints, usually that two
of them have Hamming distance and reverse complement Hamming distance
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greater than a certain threshold. Formally, given x, y ∈ Σn and letting yRC be
the reverse complement of y, the reverse complement Hamming distance between
x and y, dRC

H (x, y), is defined as the Hamming distance between x and yRC ,
dRC

H (x, y) = dH(x, yRC), where the Hamming distance is the usual one, counting
the number of positions where the two strings differ.

In particular, the main concern of DNA word design is to identify maximal set
of strings satisfying the above mentioned constraints. There is some theoretical
work [5] that gives upper and lower bounds to the dimensions of such codes, and
also some algorithms constructing such codes [10], that are based on stochastic
local search.

The aim of the ongoing work we are presenting here is to give a constraint-
based algorithm to build such sets of strings. We will tackle two different versions,
both the optimization problem, i.e. find the maximal code, and the constraint
satisfaction problem (CSP), i.e. find a set of a given size satisfying the con-
straints. At this stage of the work, we have made some working hypothesis that
simplify the problem. The main one replaces the reverse complement Hamming
distance by the simpler reverse Hamming distance. Given two strings x, y ∈ Σn

and indicating by yR the reverse of y, this new distance is simply defined as
dR

H(x, y) = dH(x, yR). A more detailed discussion of the properties of such dis-
tance can be found in [9]. Actually, this assumption is painless, as in [5] it is
showed that there is a (constructive) one to one correspondence between these
codes and the ones making use of the reverse complement distance.

The main problem we have to face, however, is related to the huge dimen-
sion of the search space into play. In fact, reasoning for simplicity with the
CSP version of the problem, if we are looking for a code of size m, then we
have m variables, whose domain is the space of all strings of length n, of size
|Σ|n = 4n. Therefore, not only the space of possible solutions has a dimension
of the order of 4nm (which for the reasonable values of n = 10 and m = 50 is
around 10300, a gigantic size!), but also there is the problem of finding a way
to (over)represent the feasible domains of the variables during the computation,
as direct memorization is out of discussion. To tackle this problem we use a
symbolic representation of these feasible sets of strings, pretty much in the line
of how boolean functions are represented in symbolic model checking. Though
these representations, which make use of direct acyclic graphs, can be expo-
nentially large, they seem to perform quite well in practice. In addition, they
automatically allow for an effective propagation algorithm that achieves global
consistency. In Section 2 we introduce in more detail such mechanisms.

Needless to say, the enormous dimension of the search space pushes for a
theoretical analysis of the problem in order to introduce as many constraints as
possible. Moreover, an efficient strategy is also needed to choose the branches of
the search tree during its exploration. The solution found so far are presented
in Section 3. Finally, in Section 4 we present some results and we discuss the
current weak points of this approach, outlining some possible solutions.
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2 Symbolic Propagation

There are two versions of the DNA code design problem for strings of length
n: the optimization one, looking for maximal size codes, and the CSP, looking
for a code of fixed dimension m. Both these problems are parametrical w.r.t.
the minimum distance D we impose between two strings belonging to it. This
distance is

d(x, y) = min{dH(x, y), dR
H(x, y)}, (1)

i.e. the minimum between Hamming and reverse Hamming distance. In partic-
ular, in the CSP, we have m variables whose starting domain is the set Σn.

In the Introduction we mentioned that one of the main problems in attempt-
ing to use constraint-based methods for DNA code construction is the huge size
of the domain of each variable. Therefore, there is the problem of storing some-
how the feasible values that can be assigned to variables at every point of the
search tree. Moreover, we need a way to perform efficiently the propagation of
constraints introduced whenever a variable gets instantiated to an element of its
domain. These constraints are of the form d(X, s) ≥ D, where s is the value of
the newly instantiated variable.

The techniques we use to tackle both these problems are taken from sym-
bolic model checking [4]. In particular, we use a compact representation of set
of strings by means of a particular kind of direct acyclic graphs (DAG) that
resembles closely OBDD [3], and that will be called Generalized Decision Di-
agram (GDD). The very basic idea is that we can identify a set of strings S
with its characteristic function S = χS : Σn → {0, 1}. Then we build a rooted
DAG representing this function, where nodes are divided into two categories,
terminal and non-terminal. There are just two terminal nodes, one labeled with
0 and one labeled with 1. Every non-terminal, or internal, node is labeled by a
number from 1 to n. Every internal node has |Σ| = K edges, labeled by the K
different letters of the alphabet (K = 4 for DNA, but the following description
is general). Edges always go from nodes with label i to nodes with label j > i
or to terminal nodes. Moreover, there is only one node with label one, and it is
the root.
The main property of these graphs is that the concatenation of edge labels of a
path from the root to the terminal node 1 represent a string belonging to the set
S, i.e. evaluating its characteristic function to 1. Concatenating the label a ∈ Σ
of an edge exiting from a node with label i, correspond to assign a to the ith
letter of the string being constructed.3 On the other side, the labels of all paths
leading to node zero correspond exactly to strings not belonging to S.
A necessary request in order to make sense out of the previous definition is that
these GDD graphs must be in canonical form, where there are no redundant
nodes (with all edges pointing to the same node) and no duplicated nodes (two

3We adopt the convention that if an edge goes from a node i to a node j > i, with
j − i > 1, all position in the string between i + 1 and j − 1 are set to a wild character
∗, so that a path corresponds more precisely to a string in the augmented alphabet
Σ ∪ {∗}.
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nodes with the same label and with edges pointing to the same nodes). This form
is unique and can be computed efficiently. Proof and algorithm are a straight-
forward adaption of the classical ones in [3].
The crucial feature of these representations is that, though containing an ex-
ponential number of nodes in the worst case (w.r.t. the number of levels or of
different labels of internal nodes), they usually behave well, and have a small
and tractable size. Moreover, there exists an efficient algorithm for constructing
the GDD G representing the intersection of the sets accepted by two GDD G1

and G2, whose complexity is bounded by the product of the dimension of G1

and G2 (but can be made more efficient in practice by implementation tricks,
cf. [2]). This algorithm is also a straightforward adaption of that presented by
Bryant in [3] in the context of boolean functions.
In Figure 1 we show such a GDD for the set of binary strings of length 6 at
Hamming distance d ≥ 3 from the string 000000. In general, all GDD represent-
ing set of strings at distance (either Hamming or reverse Hamming) D or more
from a given string s have a shape similar to this GDD.

We use GDD for keeping track of the feasible domain of each non-instantiated
variable at each level of the search tree. Every time we choose a branch in the
search tree we instantiate a variable, that is to say, we add a string s to the
current code. For that string, we construct the GDD for the set of strings at
distance d(X, s) ≥ D. This GDD is constructed by intersecting the two GDD
representing the set of strings at Hamming distance at least D from s, and the
set of strings at reverse Hamming distance dR

H(X, s) ≥ D. Then this resulting
GDD is intersected with the GDD representing the feasible domain before the
branching. The outcome of this computation is a GDD representing exactly
the domain of the non-instantiated variables, given all the constraints (we have
constraints of the form d(X,Y ) ≥ D, for every variable X < Y ). Therefore, the
use of symbolic graphical representations for the the variable domains not only
allow a compact representation of exponentially big sets, but also, through the
intersection algorithm, achieves a propagation which is globally consistent.

The problem with GDD is that there is no guarantee that their size stays
small. In theory, some of them can have size exponential in n. Luckily, the ex-
perimental results run by combining together GDD representing constraints of
the form d(X, s) ≥ D show that these intersections behave well, and never ex-
plode combinatorially. In particular, the GDD corresponding to the constraints
introduced by the addition of a single string to the code all have the same, fixed,
size and shape.4 When we start combining these GDD together, to represent
the intersection of the corresponding sets, the size of the GDD product rises,
while the number of strings belonging to the intersection decreases. After com-
bining a certain number of basic GDD, dependant on the length of the strings,
the dimension of the intersection becomes sufficiently small in order to have a
compact representation. In every case, the dimension of the bigger GDD in this
process remain quite small. We conjecture that this depends on the fact that the

4The complementary sets of Hamming spheres, for a fixed threshold, are all isomor-
phic.
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intersection of complementary sets of Hamming spheres, all with same radius,
has a sufficiently high internal structure, and thus can be compressed efficiently.

Fig. 1. A generalized OBDD representing the set of binary strings at Hamming distance
d ≥ 3, from the string 000000. Note that or the binary alphabet, GDD are exactly
OBDD.

3 More Constraints and Heuristics

The code construction problem has many symmetries and, due to the big size of
the search space, we have to break as many as we can. First of all, each set S
can appear in all its |S|! permutations. To avoid this, we have to introduce the
lexicographical order between strings, and to impose the constraints Xi < Xj

for i < j.
In addition, given a code C, there are a lot of equivalent codes obtained by trans-
forming C using isometries of the string space, i.e. functions that are distance-
preserving. In the case of our distance (1), these transformations must preserve
the relation between conjugate indexes, i.e. couple of indexes whose sum is n+1
(for strings of length n). This is due to the fact that these couples of indexes are
connected by the reverse transformation.
To break these symmetries, we should introduce constraints guaranteeing that a
code C appears in just one possible way, i.e. forbidding all subsets C′ isometric to
C. However, the identification of such set of constraints is still an open problem.
What we do for now is fixing the minimum reverse Hamming distance of a word
in the code from itself, and then set the value of the first variable to the smallest
string in the lexicographical order with such a property. Moreover, if this mini-
mal distance is 2K (reverse Hamming distance is always even5), then we impose

5This is very easy to see: consider, for simplicity, a string of even length, say 2n, and
write it uv, with |u| = |v|. Then dR

H(uv, uv) = dH(uv, vRuR) = dH(u, vR)+dH(v, uR) =
dH(u, vR) + dH(vR, u) = 2dH(u, vR).
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the additional constraints dR
H(X,X) ≥ 2K, for all variables X. In this direction,

another interesting open question is if every maximal code C contains a palin-
dromic word, i.e. if the minimum self-reverse distance has to be always zero.
This seems plausible, as these strings are the less committing in terms of the
constraints they impose. In fact, for a palindromic word x, dH(x, y) = dR

H(x, y),
for each y ∈ Σn, hence the sets dH(x, y) ≥ D and dR

H(x, y) ≥ D coincide, and
their intersection has the biggest possible cardinality.
At the moment, we do not use a symbolic representation of these added con-
straints, so our propagation algorithm achieves only a local consistency w.r.t. all
constraints into play. Despite this, these constraints are exploited in the algo-
rithmic procedure used to select the next string in a branching point. In fact, to
choose a new word, we have to look at the paths terminating to node 1 in the
current GDD. This can be done efficiently by doing a depth-first-search traver-
sal of the tree that is the unfolding of the portion of the GDD containing these
paths. Essentially, these new constraints become heuristics to prune parts of this
tree during its exploration.

Another crucial point is the strategy used in the choice of the next word in
a branching point. In fact, we want to find quickly a good solution, in order to
make pruning effective. The pruning is executed if the size of the biggest code
found is greater than the sum of the dimension of the constructed partial code
and the dimension of the set of feasible strings (i.e. the dimension of the set
accepted by the GDD, which can be counted simply by traversing it).
The strategy we use for the selection of the next string is based on the observation
that in a code with minimum distance D, the minimum distance relative to most
of its words is also D. Therefore, we select new words first from the subset of
feasible strings at minimum distance from the partial code. Another interesting
open question is if limiting the branching to this subset still guarantees that an
optimal code will be eventually found.

4 Results and Future Work

We implemented our algorithm in C, and consequently run several tests. In par-
ticular, we tried to look for maximal codes of words of length between 4 and 10
in DNA alphabet, setting a time limit of one hour.
In all these cases, the algorithm finds very quickly a good solution, i.e. a code
of pretty high size. Unfortunately, in one hour it never finishes the exploration
of the search tree, even for strings of length 4. Moreover, it never finds a better
solution than the initial one, even if it discovers other codes of the same size.
Some results can be found in Table 1. Unfortunately, there is no literature about
code construction w.r.t. distance 1, so we cannot compare easily our method
with other approaches.

We also compared our program with CLP (FD) of SICStus Prolog for the
easier task of constructing Hamming codes. The results of the SICStus compu-
tations are taken from Dovier et alt. [6], and some comparisons can be found in
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string length dist. threshold size of the solution found time

4 2 40 0,18 sec

4 3 7 0,03 sec

6 3 59 99,00 sec

6 4 19 0,12 sec

6 5 6 0,03 sec

8 4 113 16,19 sec

8 5 30 4,57 sec

8 6 10 2,47 sec

10 6 58 35,10 sec

10 7 19 52,20 sec

10 8 9 105,18 sec

Table 1. Size of the best code found and time needed to find it, for different string
lengths and thresholds for the simplified DNA word design problem.

Table 2. Here we can see that our engine runs around 50 times faster than the one
of SICStus Prolog, though it preserves the same pattern of performance: where
SICStus fails to find an answer in reasonable time, also our program suffers the
same problem.

Taking a closer look to the behaviour of the search, we discovered that the
main problem is that the pruning is not very effective. This means that the
algorithm has to go very deeply in the tree to realize that a branch cannot
contribute with a bigger code than the one found so far. Therefore, to create a
more powerful pruning procedure, we need to work out a more clever estimate
of the maximum code size, given a partial one.
In addition, the size of the actual search tree is too big to have any hope of
exploring it all. The only chance to reduce its size is to find other constraints
imposing the uniqueness of the maximal code. The combination of these new
constraints and of more powerful pruning heuristics may be able to shrink the

string distance size of existence of time in time in
length threshold the code a solution SICStus our engine

6 3 8 Y 0,0 0,0

6 3 9 N 562,49 0,5

8 5 4 Y 0,0 0,0

8 5 5 N 3,85 0,03

10 3 64 Y 5,71 0,22

10 5 8 Y 0,05 0,01

10 5 9 Y 668,00 14,40

Table 2. Comparison of the performances between SICStus Prolog and out engine for
the construction of Hamming codes.
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portion of the tree to be visited to a small enough size. It is not clear, however,
if, even with such additions, the algorithm would finish the exploration in a
reasonable running time or if simply the task of using enumeration procedures
for solving code construction problems is hopeless.

Nevertheless, there is a different and promising direction which we are cur-
rently beginning to explore: we are abandoning the target of a complete explo-
ration of the search tree, and trying to integrate some stochastic ingredients
allowing to visit just a small portion of the space, characterized by having an
high probability of containing the optimal solution. Similarly, we could try to
mix the branch and bound schema with local probabilistic search procedures. In
this way, we may be able to create an algorithm giving good codes (even if not
necessarily the optimal ones) in a reasonable time.
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Abstract. Adhesion between endothelial cells is an example of a bio-
logical system one would like to model. It is involved in the control of
leukocyte migration across the endothelium of blood vessels. Some of
the molecules participating to this process are known and a biochemical
network can be drawn, but knowledge is still incomplete: the value of
kinetic parameters are not known and other proteins and genes partici-
pating in adhesion have probably yet to be discovered. In order to tackle
such problems and make progress, tools are needed that work at a qual-
itative level and that provide a large flexibility to allow biologists to ask
various questions about the model.

Our approach is based on the following elements: (i) we use Thomas-
Snoussi theory to abstract a system of ordinary differential equations into
a discrete network, and an extension which considers so called singular
states; (ii) a formal representation of this network using Constraint Logic
Programming is developped. We show that constraints allow, with a
single formal description of the model and the evolution rules, to perform
various tasks: to infer and to check properties from observations and to
perform qualitative simulations.

1 Introduction - Modeling objectives

With the development of high-throughput projects the quantity of molecular
level data is exploding. It is now clear that biology is entering a new era in
which all these molecular components have to be assembled into a system in
order to reach new levels of understanding.

In general terms, our goal is to formalize ’verbal models’ or, stated differ-
ently, build a formal model from a word description of a biological phenomenon.
This means in practice that the knowledge is incomplete, that most informa-
tion is not precise but qualitative, and that we may have to deal with several
hypotheses. In such a state of partial knowledge we view modeling as a tool to
formalize different competing hypotheses and explore their consequences; to help
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in interpreting new data and use data to discriminate among competing models;
to infer parameters and to devise maximally informative experiments. In short
we look for rigorous methods to reason about models and data in the context of
incomplete knowledge on complex systems.

One of our interests is the integration of biochemical reactions and genetic
regulatory interactions in a single unified framework. It is possible in the case
of genetic networks to describe the regulatory interactions by logical (or dis-
crete) equations [7,8] without explicit reference to Ordinary Differential Equa-
tions (ODEs). The situation is different in the case of biochemical or signal
transduction networks because the types of reaction are more diverse (phospho-
rylation, complexation, transport, etc.). So, although differential equations are
not well suited to this knowledge level (where parameters are unknown), they
are nevertheless useful as they can be transformed, at least in some cases, into a
discrete model with the same logical structure. This allows a qualitative analysis
of the dynamics and the exploration of the properties of a given model.

As suggested in [1], such a formal description of the biological system can
be easily exploited via a Constraint Logic Programming (CLP) implementation.
The advantages of the CLP approach are (i) that the implementation is expressed
in a very similar way to the formal specification, thus guaranteeing the correct-
ness of the implementation, (ii) that many different queries can be easily asked
to this formal specification due to its logical form, for example: queries equiva-
lent to simulation as well as queries equivalent to inference of model parameters
in a context of incomplete knowledge.

These principles are illustrated by the study of endothelial cell-cell adhesion
[5]. Once a logical formalization of the discrete model is at hand, we explore the
properties of the system, and in particular we try to infer parameter values from
the knowledge about the behavior of the system. Each behavioral information
being a constraint that can be added to the constraints already known.

After a short introduction to the biological phenomenon, we describe the
biological pathway and its components, then we give the ODE system describing
this pathway. The theory of Thomas and Snoussi ([7,8]) leading to Asynchronous
Multivalued Logical Models (AMLM) and the extension taking into account
’singular states’ and sliding modes is introduced in section 3. We explain in
section 4 how such logical description of regulatory models is constructed with
the help of CLP language Prolog IV [2]. We give in section 5 an example of
query.

2 The biological system

The phenomenon of cell-cell adhesion and its control by the cell is rather complex
and our knowledge about it is far from complete. Blood vessels are lined with a
monolayer of endothelial cells that form a barrier between blood and underlying
tissues. Junctions between endothelial cells (adherens junctions) are composed
of Vascular Endothelium cadherin proteins (VE-cadherin for short) embedded
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in the plasmic membrane and β-catenin proteins bound to the cytoplasmic side
of VE-cadherin. The migration of leukocytes through the monolayer breaks the
junctions, causes clivage of VE-cadherins and consequently β-catenin are released
in the cytoplasm [5]. The restoration process of the adherens junctions after this
perturbation is the focus of our study. The biochemical structure of the system
is informally illustrated in Figure 1.

Proteasomal degradation

(Axin, APC, GSK3, ...)

φ(cat)

φ

VE-cadherinjunctional complex

nuclear catenin

φ

x

z

yu

wLef/TCF

catenin

Nucleus

v

Synthesis

(De-)Complexation

Lef/TCF:catenin complex(De-)Complexation

Transport

Plasmic membrane

Cytoplasm

Fig. 1. Schematic and informal representation of the endothelial cell-cell adhesion sys-
tem. This graph stresses the overall architecture of the system. Circles represent chem-
ical species and black ovals chemical reactions. φ represents a degradation process. The
molecules are distributed over three cellular locations: cytoplasm, nucleus and plasmic
membrane. The concentration variables (x, y, z, u, v and w) are defined by the pairs
(concentration variables, verbal definition) as follows: (x, cytoplasmic unphosphory-
lated β-catenin), (y, monomeric VE-cadherin in the membrane), (z, β-catenin in the
cell nucleus), (u, complex of β-catenin with the VE-cadherin), (v, complex of Lef/Tcf
and β-catenin), (w, Lef/Tcf transcription factor). Single-headed and double-headed
arrows denote irreversible and reversible reactions, respectively.

From the graph of chemical reactions it is possible [4] to derive a system of
ODEs giving the rate of variation of the concentration of each chemical species.
After making several simplifying assumptions which we do not describe here (see
[4]), we can isolate the following subsystem of 2 coupled variables x and z giving
the temporal evolution of these variables (where the other four variables can be
determined when a solution of the subsystem is known):







ẋ = kx0 + kx1.σ
+(z, sz1) − kt.σ

+(x, sx1)
−(mx1 + mx2.σ

+(x, sx2)).x
ż = kt.σ

+(x, sx1) − mz.z
(1)
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Where σ+(x, s) represents an increasing sigmoid function with threshold s,
the k parameters represent production kinetic constants, and the m parameters
represent degradation kinetic constants. The order between the two thresholds
for x is unknown and consequently two cases have to be considered: sx1 < sx2

and sx2 < sx1. The full system contains an additional threshold sz2 and the
order between sz1 and sz2 must also be considered.

3 Thomas-Snoussi theory and singular state

Thomas [8] has developped a logical description for genetic regulatory networks
called Asynchronous Multivalued Logical Models (AMLM). It allows to analyse
qualitatively the dynamics of such networks. The logical equations are derived
from Piecewise Linear Differential Equations (PLDEs) of the form:

ẋj = h(x1, . . . , xi, . . . ) − mj .xj (2)

giving the evolution of the concentration of the protein j, where h is a sum of
products of (positive or negative) step functions depending on several variables
xi (possibly including xj itself), and mj is the degradation coefficient of the
protein j. Equations 1 can be brought to this form by replacing sigmoids func-
tions (σ) by step functions (s) defined as follows: s

+(x, sx) = 1 if x ≤ sx and 0
otherwise (with s

−(x, sx) = 1 − s
+(x, sx)), sx being the discrete value associated

to the threshold sx.

Now, following Thomas [8], we define discretization operators. If for example,
a real variable a has two thresholds (sSup, sInf with sSup > sInf) it is abstracted
in a discrete variable a = d(a) as follows:

a = 0 ⇔ a < sInf

a = 1 ⇔ sInf < a < sSup

a = 2 ⇔ sSup < a

In the framework of AMLM, a discrete state S of the system is defined by
a vector (x1, . . . , xj , . . . ) of discrete concentrations and a path is a sequence
of states. The logical equations define the focal state (trend of the system) FS
associated to each state S. Each component FSi is given by FSi = fi(S), where
the functions fi are sums of terms: products of an integer coefficient and of step
functions.

If the value of only one variable differs between FS and S, this variable changes
value by one unit in the direction of FS. If n variables differ between FS and S,
n transitions are considered (instead of just one) because, by the asynchronous
hypothesis, only one variable can change value in a transition. In such a descrip-
tion the system evolution is non-deterministic.
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We obtain the following system of logical equations from the equations (1)
and for the discrete threshold orders sx2 < sx1 and sz1 < sz2:















































X = Kx,0. s
−(x, sx2).s

−(z, sz1)
+Kx,0+1. s

−(x, sx2).s
+(z, sz1)

+Kx,3. s
+(x, sx2).s

−(x, sx1).s
−(z, sz1)

+Kx,3+4. s
+(x, sx2).s

−(x, sx1).s
+(z, sz1)

+Kx,3−5. s
+(x, sx1).s

−(z, sz1)
+Kx,3+4−5. s

+(x, sx1).s
+(z, sz1)

Z = Kz. s
+(x, sx1)

(3)

The six discrete parameters K in this model depend on the real K kinetic pa-
rameters:

Kx,0 = kx0

mx1

, Kx,1 = kx1

mx1

, Kx,3 = kx0

mx1+mx2

,

Kx,4 = kx1

mx1+mx2

, Kx,5 = kt

mx1+mx2

, Kz = kt

mz

The discrete parameters are then defined as follows: Kx,i = dx(Kx,i), Kx,i+j =
dx(Kx,i + Kx,j), Kx,i−j = dx(Kx,i − Kx,j), Kx,i+j−l = dx(Kx,i + Kx,j − Kx,l),
Kz = dz(Kz).

As explained in [8] and in [6] frontiers between adjacent states have to be
taken into account. De Jong et al ([6]) have devised a general and rigourous way
based on the concept of Filippov solutions to compute transitions between regu-
lar states (states not confined on a frontier) and singular states (states confined
on one frontier or an intersection of several frontiers) or between singular states.
A state component is said to be regular if it does not stand on a frontier; the
dimension of a state is the number of regular components of this state. We have
recast this extension of AMLM into a logical form suitable for a CLP implemen-
tation [3].

The transition graph of such a model is established from all the transition
between domains.

Example: The transition graph for the equations 3 with the following pa-
rameters: Kx,0 = Kx,0+1 = 1, Kx,3 = Kx,3+4 = Kx,3−5 = Kx,3+4−5 = 0 and
Kz = 2, is given in Fig. 2.

Note that in our state labelling scheme, even values represent regular com-
ponents and odd values singular ones.

Some transitions can be easily explained. Let us consider the state S =
[x, z] = [0, 2] which is a regular state. Then from the equation 3 its focal state
is FS = [Kx,0+1, 0] = [1, 0]. As a consequence x tends to augment as z tends
to diminish. Then two transitions are possible: [0, 2] → [0, 1] and [0, 2] → [1, 2].
Transitions begining in singular states are less easy to understand: intuitively, for
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Fig. 2. Example of transition graph.

example, transition [1, 2] → [1, 1] exists partly because transitions [0, 2] → [1, 2]
and [2, 2] → [1, 2] oppose themselves. ut

4 Implementing AMLM taking into account ’singular
states’ in CLP

4.1 Organization of the CLP program

First we present the organization of the program and then some difficulties that
we met. To follow the programming methodology “constraint first, then enumer-
ate”, we use intensively reified constraints to avoid non-determinism. It means
we associated to each predicate p(X) a boolean parameter B such that B is equiv-
alent to p(X) true. As the variables of AMLMs have finite discrete values, the
solver of Prolog IV which is used the one dealing with interval of integers. As
usual, some redundant constraints have been introduced to improve the infering
capabilities of this solver.

In the following we outline the implementation. The main predicate is
multivalued async model(B, Model, Path) which is true if B is equivalent
to the fact “Path is a possible path (list of states) of the model Model”. The
definition of this predicate uses the predicate successor(B, Model, State i,
State s) which is true if B is equivalent to the fact “State s is a possible
successor of the state State i considering the model Model”. Typically, the
definition of successor uses reified constraints:

successor(B, Model, State_i, State_s) :-

B = B1 bor B2,

not(B1 band B2),

less_equal_successor(B1, Model, State_i, State_s),

greater_successor(B2, Model, State_i, State_s).

It expresses that the dimension of State s is either less or equal to the di-
mension of State i (B1 true), or greater (B2 true). The first condition enforces
B to be the disjonction of B1 and B2, and the second condition is a redun-
dant constraint which enforces the exclusivity of the two cases. The predicates
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less equal successor and greater successor are defined in a similar way
stating that State s is a possible successor of State i depending of one of the
two cases.

For example, greater successor(B, Model, State i, State s) is true if
(i) B = B1 and B2, (ii) B1 is true iff State s has more regular components
than State i, (iii) B2 is true iff transition State i → State s exists according
to Model and finally, (iv) B implies State i is singular (which is a redundant
constraint). Note that condition (iii) is established by constructing the minimal
hyper-rectangle containing the focal states of all regular states which are adja-
cent to State s [6].

Another predicate, i.e. model(Idf P, Model), is used to make the represen-
tation (variable Model) of the model identified by the variable Idf P grouping
an identifier (here adhesion for the adhesion model) and the list of parameters
of the model. This representation is composed mainly by the discrete equations
giving the qualitative evolution of the system.

4.2 Some implementation issues

We mention here some difficulties that we met when deriving a CLP program
from the specification of AMLM extended to singular states.

A first difficulty is due to the fact that a direct translation of [6] would have
lead to constraints of the form ∃B|(B ≡ ∃X|C(X)), meaning that the boolean
B is true iff C(X) is consistant (not to be confused with ∃B,∃X|B ≡ C(X)).
To overcome this difficulty we had to establish a new property C ′(U), where U
is a variable on which X depends, such that B ≡ ∃X|C(X) ⇔ B ≡ C ′(U).

A second problem concerns the definition of the minimal hyper-rectangle
which contains all focal states of regular states adjacent to a given state S. In
order to express such an hyper-rectangle via a finite number of constraints, the
number of adjacent states of S must be known (it is 2Order where Order is the
number of singular components of S). In a first approach, we use quasi-parallel
processes (freeze concept) waiting for order to post the necessary constraints. It
means that queries must provide the knowledge of the order of states if we want
to enumerate on a complete set of constraints. We currently develop another
approach whose aim is to determine statically the order of the considered states.

A third difficulty concerns the definition of a component of a focal state. We
need to express that the predicate focal comp(Xf, LB, LV Xf) is true if LB is
a boolean list in which one and only one element is true (of index i), LV Xf is
a list of integers, Xf is the ith element of LV Xf. A first implementation is the
following:

focal_comp(Xf, LB, LV_Xf) :-

index(1, LB, I),

index(Xf, LV_Xf, I).
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where index(V,L,I) is true if V is the Ith value of L. Such an implementation
allows to forbid Xf to take the jth value of LV Xf if LBj is false. But it requires
the use of union of intervals (at least in Prolog IV).

Example:

LB = [B1, B2, B3],

LV_Xf = [4,6,5],

focal_comp(Xf, LB, LV_Xf),

B2 = 0.

To get the result Xf = cc(4,5) with the above implementation of focal comp

the interval of I must be the union of intervals [3,3] and [5,5]. ut

We had to find a solution which uses only standard intervals.

5 Examples of result

The program has been used for simulation knowing the order of the thresholds
and the values of the K parameters but also to infer this knowledge by imposing
constraints like known steady states, number of steady states or the minimal
dimension of a state reached from a regular state.

To identify all the stationnary states (regular and singular) in the presented
model, we state the following query:

model([adhesion, P], Model),

P = [_,[[tx,0], [tz,1]],_], % Model is the presented model

multivalued_async_model(1, Model, [S,S]),

intsplit(S).

The second condition enforces Model to be the adhesion model for the discrete
threshold orders sx2 < sx1 and sz1 < sz2. The last condition enumerates the
possible steady states (the parameter values are not enumerated). We find in
this way 13 possible steady states over the 25 states of the system. For the
solution S = [4,0] we obtain without enumeration a completely instantiated
list of parameters: Kx,0 = Kx,0+1 = Kx,3 = Kx,3+4 = Kx,3−5 = Kx,3+4−5 = 2 and
Kz = 0. If we want to be certain of the existence of a steady state given in this
way, we show by enumeration the existence of one set of parameters accepting
this steady state. With this existence condition, the number of steady states goes
from 13 possible to 11 actual steady states.

One of the most interesting query concerns restoration paths. Gulino and al.
[5] showed that when junctions are destabilized by antibodies, VE-cadherins are
destroyed and β-catenins are released in the cytoplasm. After this perturbation,
a reformation of junction is observed. Then, a restoration path for the models
defined by (3) is such that:
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1. it begins by an initial state which is a perturbated state (PS) of the normal
state of cell (i.e. a steady state, SS). More precisely x in PS is greater than x
in SS (since β-catenins are released in cytoplasm),

2. it contains at least one state for which z = 4, as it provides the possibility
of synthesis of VE-cadherins necessary to the reconstruction of junctions,

3. and it finishes by the normal state of the cell (SS) for which z 6= 4, because
over-expression of the VE-cadherin gene in a normal state is not possible.

The constraint of existence of at least one restoration path for a given model,
reduces the number of models from 600 to 40. We observe that all these models
have the property Kz = 2. The verification of this property has been obtained by
a failure resulting of imposing to these 40 models the negation of the property
(Kz 6= 2). It is important to note that if only regular states are considered then
some of these models do not accept restoration path. This shows that it is im-
portant to take into account singular states to model the behavior of this system.

Example: Among the models which accept a restoration path, one finds the
one which is presented in the example of the section 3. For example the path
[[4,0],[4,1],[4,2],[4,3],[4,4],[3,4],[2,4],[1,4],[1,3],[1,2],[1,1],

[1,0],[1,0]] is a restoration path. This path would have not been observed if
we had only considered ordinary AMLMs, i.e. not extended to singular states:
clearly the normal state which finishes this path is singular. ut

6 Some perspectives

There are numerous developments to this work, including efficiency, extension
of models, interface and application to other biological systems.

Among them, one important issue is the languages that must be provided to
the users of such a system: the language devoted to the expression of properties,
the one which expresses results. We are thinking to a CTL-type (Computational
Tree Logic) language in order to enforce complex properties. The design of a
language for expressing results presents a real challenge. That is because biolo-
gists need such results like “these models satisfy these behaviours” expressed in
an intentional way and not extensively as it is presently. This issue, related to
automatic learning, is not an easy one but progress can certainly be achieved by
first establishing with biologists the elementary components of the formulas of
such a language.
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réseaux biologiques logiques à l’aide de la PLC (Programmation Logique avec Con-
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1 Introduction

Biochemical networks – networks composed of the building blocks of the cell and
their interactions are qualitative descriptions of the working of the cell. Such
networks can be modeled as graphs. Metabolic networks are typical examples
of such networks. They are composed of biochemical entities participating to
reactions as substrates or products. Such a network can be modeled as a bipartite
digraph which nodes are the biochemical entities and reactions and edges are the
substrate or product link between an entity and a reaction.

Pathways are specific subsets of a metabolic network which were identified
as functional processes of cells[1]. As these pathways are known to be working
processes of the cell, they can be used to study the metabolic network. One type
of metabolic network analysis consists in finding simple paths in the metabolic
graph[2,3,4,5,6]. Here we focus on such analysis to discover pathways from a
set of their reactions. A potential application is the explanation of DNA chip
experiments using a CSP able to solve pathway discovery problems.

The study of the metabolic network is constantly evolving and most of the
problems are solved with dedicated algorithms. This dedicated approach has the
benefit of yielding very efficient programs to solve network analysis problems.
This approach however has the drawback that it cannot be easily adapted to solve
other problems or easily combined to solve combinations of various analyses.

In [7,8], we proposed to use constraint programming to solve constrained
path finding problems in metabolic networks. This declarative paradigm allows
to easily adapt programs or combine different programs. In order to provide a
high level modeling language and as the data and results are graphs, we defined
a graph computation domain for constraint programming [9].

The two following sections are devoted to a short introduction to CP(Graph)
and a description of its application to metabolic network analysis.

?This research is supported by the Walloon Region, project BioMaze (WIST
315432). Thanks also to the EC/FP6 Evergrow project for their computing support.
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2 The CP(Graph) Framework

CP(Graph) [9] features graph variables, node and arc variables, and set variables
for nodes and arcs. They are depicted in figure 2. That figure shows the notation
used for constants and variables in this paper. It also shows that a graph variable
has an inherent constraints linking its arcs to its nodes.

Type Representation Constraint Constants Variables

Integer 0, 1, 2, ... i0, i1, ... I0, I1, ...
Node 0, 1, 2, ... n0, n1, ... N0, N1, ...
Arc (0, 1), (2, 4), ... a0, a1, ... A0, A1, ...
Finite set {0, 1, 2}, {3, 5} ... s0, s1, ... S0, S1, ...
Finite set of nodes {0, 1, 2}, {3, 5} ... sn0, sn1, ... SN0, SN1, ...
Finite set of arcs {(0, 3), (1, 2)}, ... sa0, sa1, ... SA0, SA1, ...

Graph
(SN, SA)
SN a set of nodes
SA a set of arcs

SA ⊆ SN × SN g0, g1, ... G0, G1, ...

Weight functions N ∪A → IN w0, w1, ... –

Three kernel constraints suffice to express all MS-definable properties of
graphs [10] as constraints:

Arcs(G,SA) SA is the set of arcs of G.

Nodes(G,SN) SN is the set of nodes of G.

ArcNode(A,N1, N2) The arc variable A is an arc from node N1 to node N2.
This relation does not take a graph variable into account as every arc and node
has a unique identifier in the system. If A is determined, this constraint is a
simple accessor to the tail and head of the arc A and similarly if both nodes are
determined.

These constraints enable to express more complicated constraints such as
Reachables(G,N, SN) which states SN must be the set of nodes reachable from
N in G (the transitive closure of the adjacency relation in G) or Path(G,N1, N2)
which holds if G is a path from node N1 to node N2. While these constraints
can be expressed using kernel constraints, they are more efficient when imple-
mented using dedicated global propagators (either for their consistency level or
algorithmic complexity).

CP(Graph) enables to express constrained subgraph extraction problems
such as the TSP or the equicut problem:

– Finding the TSP in graph g with weights w: minimize Weight(G,w) s.t.

SubGraph(G, g) ∧ Cycle(G) ∧ Nodes(G) = Nodes(g)
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– Graph partitioning problem: equicut of a graph g of even order: minimize
# (Arcs(g) \ (Arcs(G1) ∪ Arcs(G2))) s.t.

SubGraph(G1, g)∧SubGraph(G2, g)∧Nodes(G1)∪Nodes(G2) = Nodes(g)∧

#Nodes(G1) = #Nodes(G2) =
1

2
#Nodes(g)

Related work: constraint programming was used to solve constrained path
finding problems in [11] using a finite domain model (successor variables). Path
variables were introduced in [12] to solve constrained path problems as part of a
network design problem. A cost-based filtering technique for constrained shortest
path problems was described in [13] and a global path constraint was presented in
[14]. Graphs also play an important role in constraint programming in the design
of propagators for global constraints: graph algorithms are used [15] and global
constraints were modeled as networks of similar constraints [16,17]. The problem
addressed in this paper is similar to queries addressed in the model checking
approach of BIOCHAM [18]. While queries about reachability can be handled
by both systems, it seems that some queries such as optimization problems can
be expressed using CP(Graph) but not with CTL logic.

As it is, CP(Graph) allows constrained subgraph extraction. However, we are
also working on constrained approximate subgraph isomorphism [19] by extend-
ing CP(Graph) with map variables [20,21].

3 Metabolic network analysis experiments

The general kind of analysis we wish to perform with CP(Graph) is pathway
discovery by constrained subgraph extraction. One potential application of this
type of analysis lies in assisted explanation of DNA chip experiments. In such
experiments, the behavior of a sane cell and a mutant are compared in a given
context (the substrate on which they are living or more generally their environ-
ment). This comparison is done at different times by extracting and amplifying
the expressed RNA in the nucleus of the cells (this kills the cell). This RNA is
then put on a DNA chip: an array of representative sequences of bases for a set
of genes. The RNA binds to the chip in the locations which are specific to it.
That array is then scanned to see the level of expression of each RNA strand.
That RNA encodes for given enzymes which catalyze given reactions. Hence,
the level of RNA can be translated into the information of which reactions were
active in the cell at the time its RNA was extracted. Given this set of reactions,
biologists would like to know which processes where active in the cell. If a CSP
allows to recover known processes from sets of reactions, it could be adequate
to discover the real processes given other sets of reactions. Hence, such a CSP
could approximate the real processes at work in a cell from DNA chip results.
These computational results could then be used to further guide other concrete
experiments which are more expensive.

The current experiments focus on linear pathways by doing constrained short-
est path finding. Future work comprise increasingly better characterizations of
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the CSP (ie. more constraints which increase the rate of correct recovery) and a
formulation of a CSP for pathways which contains branchings or cycles.

3.1 Prototype of CP(Graph) Implemented in Oz/Mozart and
Gecode

We implemented a prototype of CP(Graph) in the Oz/Mozart [22] constraint
programming framework. A set of nodes and a set of arcs are used to implement
each graph variable. We also implemented this prototype over the Gecode generic
constraint development environment [23]. In these prototypes, we implemented,
among others, the global path propagator of [14].

3.2 Constrained Shortest Path Finding

As about half of the known pathways are simple paths [24], one type of experi-
ment consists in trying to find these pathways by using constrained path finding
in a directed graph (knowing a few nodes of the path). In [25], experiments were
done first with a dedicated shortest path finding algorithm. Then some nodes
(the pool metabolites, molecules like ATP or H2O which are ubiquitous and take
part in many reactions) were removed from the graph and the results compared
with the previous ones. Some pathways, such as glycolysis, however use some
of these metabolites as intermediates. In order to decrease the likelihood of se-
lecting these nodes while still allowing to select them, all nodes were assigned a
weight proportional to their degree. As pool metabolites have a very high degree,
they are much less likely to be selected in the shortest paths.

Our experiment consists in redoing the former experiment with an additional
constraint of mutual exclusion for certain pairs of reactions. These pairs are
reverse reactions (the reaction from substrates to products and the one from
products to substrates). Most of the time, these reactions are observed in a single
direction in each species. Hence we wish to exclude paths containing both in our
experiment. Such additional constraints like mutual exclusion are not always
easily integrated in dedicated algorithms [25]. In CP(Graph) it just consists in
posting a few additional constraints. If n1, ..., nm are the included reactions and
(ri1, ri2), 0 < i ≤ t the mutually exclusive pairs of nodes, the program looks like:
miminize Weight(G,w) s.t.

SubGraph(G, g) ∧ Path(G,n1, nm) ∧ ∀0 < i ≤ m : ni ∈ Nodes(G)∧

∀i ∈ [0, t] : ri1 /∈ Nodes(G) ∨ ri2 /∈ Nodes(G)

In our experimental setting we first extract a subgraph of the original metabolic
bipartite digraph by incrementally growing a fringe starting by the included
nodes. Then, given a subset of the reactions of a reference pathway, we try to find
the shortest constrained path in that subgraph. The first process of extraction
of a subgraph of interest is done for efficiency reasons as the original graph is
too big to be handled by the CSP (it contains around 16.000 nodes). The results
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are presented in Table 1, it shows the increase of running time, memory usage
and size of the search tree with respect to the size of the graph for the extraction
of three illustrative linear pathways shown in [25]. All reactions are mandatory
in the first experiment. The results of another experiment where one reaction
out of two successive reactions in the given pathway is included in the set of
mandatory nodes, is presented in Table 2.

The running time increases greatly with the size of the graphs. The program
can however be stated in a few lines and first results obtained the same day
the experiment is designed. The limitation on the input graph size does not
guarantee to get the optimal shortest path in the original graph. This should
however not be a major problem as biologists are most of the time interested
in a particular portion of the metabolic graph. The rapidity of expression and
resolution of such a NP(Hard) [13] problem outweights this size limitation.

Future work comprise two main aspects. The first is being able to cope with
bigger graphs. We could design more efficient heuristics for labelling. The use of
a cost-based filtering method could prune the size of the graph given an upper
bound of the cost. Such an upperbound is available as soon as a first solution
is found. Another solution would be to use an a-priori upper bound of the cost
which would need to be increased or removed if no solution is found. The second
aspect of our future work consists in finding which additional constraints are
needed to recover known pathways as it was shown in [25] that non-constrained
shortest paths are not able to recover all of them.

We are currently working on a extention of this approach to discovering
pathways containing branchings or cycles. A first formulation we wish to test is
the following: find the smallest graph containing all the seeds such that there is
a seed from which all other nodes are reachable.

Given sns a set of nodes (seeds), minimize Weight(G,w) subject to:

N ∈ sns, sns ⊆ Nodes(G) ∧ Reachable(G,N,Nodes(G))

Glycolysis (m=8) Heme (m=8) Lysine (m=9)

Size t Time Nodes Mem Size t Time Nodes Mem Size t Time Nodes Mem

50 12 0.2 20 2097 50 22 0.2 32 2097 50 18 0.2 38 2097
100 28 2.5 224 2097 100 36 0.3 22 2097 100 40 4.7 652 2097
150 48 41.7 1848 4194 150 62 1.0 28 2097 150 56 264.3 12524 15204
200 80 55.0 1172 5242 200 88 398.8 7988 18874 200 70 - - -
250 84 127.6 4496 8912 250 118 173.3 2126 9961 250 96 - - -
300 118 2174.4 16982 60817 300 146 1520.2 21756 72876 300 96 - - -

Table 1. Comparison of the running time [s], number of nodes in the search tree and
memory usage [kb], for the 3 pathways and for increasing original graph sizes. m is the
number of node inclusion constraints and t the number of mutual exclusion constraints.

4 Conclusion

The problem of discovering the processes at work in a cell given a set of reactions
can be modeled as a constrained subgraph extraction problem. But the formal
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Glycolysis (m=5) Heme (m=5) Lysine (m=5)

Size t Time Nodes Mem Size t Time Nodes Mem Size t Time Nodes Mem

50 12 0.2 22 2097 50 22 0.3 44 2097 50 18 0.1 16 2097
100 28 2.5 230 2097 100 36 0.9 78 2097 100 40 13.3 1292 3145
150 48 79.3 5538 6815 150 62 7.3 144 3145 150 56 260.4 8642 14155
200 80 39.9 1198 5767 200 88 57.3 950 5242 200 70 4330.5 74550 192937
250 84 323.6 5428 14680 250 118 36.0 350 8388 250 96 - - -
300 118 10470.8 94988 296747 300 146 - - - 300 96 - - -
Table 2. Same experiment as in Table1, but with one reaction node included every
two (m = 5 instead of 8 or 9).

expression of this problem is not yet clear. In order to refine it, we first evaluate
the various problem formulations on recovering known pathways. We hope the
best solution to the reduced problem will be suitable to solve the more general
problem of discovering real pathways.

Such an approach is difficult to achieve using dedicated algorithms as new
algorithms must be designed each time a new problem formulation is to be
evaluated [25]. A declarative approach is more practical as it just requires the
formulation of the problem in a declarative language. Constraint programming is
a declarative framework which has been successfully used to solve hard problems.
CP(Graph) is a constraint programming computation domain suitable to express
constrained subgraph extraction problems. It provides a higher level interface to
define such problems and should be easier to use by bio-informaticians than
classical finite domain or finite set computation domains.

This first application of CP(Graph) on constrained shortest path problems
in metabolic networks shows that it is appropriate to express and solve these
metabolic network extraction problems. We shall continue this work by moving
to non linear pathways and trying to cope with bigger graphs.

Our future work includes an extention to pathways which contain cycles and
branchings, the handling of larger graphs, and the experimental characterization
of the formalization of the problem of recovering known pathways from the
metabolic graph using CP(Graph).
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A new local consistency for weighted CSP
applied to ncRNA detection

Christine Gaspin, Simon de Givry, Thomas Schiex, Patricia Thébault,
Matthias Zytnicki

INRA – BIA Toulouse

Abstract. The recent discovery of numerous sequences of RNA that do
not code for a protein gave rise to a renewed interest in bioinformatics and
many programs for detecting RNA genes have been proposed. However,
the complex structures of these RNA sequences make the problem of
detecting an element of a given family NP-complete. We present here a
framework called weighted constraint satisfaction problem, that can solve
this kind of hard problem. We also introduce a new local consistency,
particularly adapted to this kind of problem, that notably speeds up the
search. We believe this framework can efficiently handle long sequences
and more complex motifs than state-of-art programs.

1 Introduction

Our understanding of the role of RNA molecules has changed in recent years.
Firstly considered as simply being the messenger that converts genetic informa-
tion from DNA into proteins, RNA is now seen as a key regulatory factor in many
of the cell’s crucial functions, affecting a large variety of processes including plas-
mid replication, phage development, bacterial virulence, chromosome structure,
DNA transcription, RNA processing and modification, development control and
others. Consequently, the systematic search of non-coding RNA (ncRNA) genes,
which produce functional RNAs instead of proteins, represents an important
challenge.

RNA sequences can be considered as oriented texts (left to right) over the
four letter alphabet {A, C, G, U} (cf. Fig. 1(a)). An RNA molecule can fold
on itself by making a variety of interactions, the result being a structure which
is essential for the biological function. The most prevalent interactions which
stabilize folded molecules are stacking and hydrogen bonding (G–C, C–G, A–U
and U–A bonds) between nucleotides. These interactions form what is usually
called the secondary structure.

Every RNA secondary structure can be represented on a circular planar graph
where the nucleotides of the sequence are represented as vertices and are con-
nected by edges representing either (along the circle) covalent bonds between
successive nucleotides in the RNA sequence or (inside the circle) hydrogen bonds
between nucleotides from different regions (cf. Fig. 1(b)). Such a graph gives
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rise to characteristic secondary structural elements such as helices (a succes-
sion of paired nucleotides, cf. Fig. 1(c)), and various kinds of loops (unpaired
nucleotides surrounded by helices).

A more general definition of RNA structure allows for crossing edges in the
representation graph, making it possible the representation of a type of helix
usually called a pseudo-knot (cf. Fig. 1(d)) that cannot be described by a sec-
ondary structure. RNA structures can also include nucleotide triples inside triple
helices.

It is possible to classify ncRNA into families. A family is a set of sequences
that have envolved from a common ancestor. Members of a family usually have a
similar biological function that is coded by a similar secondary structure, whereas
the sequence itself is poorly conserved (cf. Fig. 1(f)).

Thus, the information contained both in the sequence itself and the structure
can be viewed as a biological signal to exploit and search for. These common
structural characteristics can be captured by a signature that represents the
structural elements which are conserved inside a set of related RNA molecules.

Our aim is to find all the members of an ncRNA family described by its
structure in a given sequence. Traditionally, two types of approaches have been
used for RNA gene finding: signatures can be modelled as stochastic context free
grammars (excluding pseudo-knots or complex structures) and then searched
using relatively time consuming dynamic programming based parsers ([10,4]).

Another approach defines a signature as a set of interrelated motifs. Occur-
rences of the signature are sought using simple pattern-matching techniques and
exhaustive tree search. Such programs include RnaMot (cf. [5]), RnaBob (cf. [5]),
PatScan (cf. [3]), Palingol (cf. [1]) and RnaMotif (cf. [9]). Although most allow
pseudo-knots to be represented, they have very variable efficiencies.

For sufficiently general signatures, this is an NP-complete problem that com-
bines combinatorial optimization and pattern matching issues (cf. [12]). A first
model using CSP has been proposed by [11]. It can detect virtually any kind
of motif but a major drawback of this approach is the huge number of solu-
tions. We present in this paper preliminary results that allow to order and select
most promising RNA gene candidates using a score based on the energy of the
molecule or the likelihood of the solution, in the framework of weighted constraint
satisfaction problem (WCSP).

2 RNA motif problem

We call motif the elements of the secondary structure that define an RNA family.
Given a sequence and a motif, our aim is to find all the occurrences of this motif in
the sequence. To a first approximation, a motif can be decomposed into strings
(cf. Fig. 1(a)) and helices (cf. Fig. 1(c)). Two elements can be separated by
spacers.

Example 1. Consider the sequence in Fig. 2(a). We want to find the motif that
begins with ACGU, then has a spacer of three nucleotides and an helix of length
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Fig. 1. Some motifs: (a) the string ACGU inside a long sequence, (b) an arbitrary
secondary structure, (c) an helix, (d) a pseudo-knot, (e) a tRNA, where the nucleotides
in italic are optional, (f) the common motif of several members of the tRNA family
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Fig. 2. The stages of the motif detection

3 with a loop of length 4 (described in Fig. 2(b)). The elements are in the boxes
in Fig. 2(d): the first region is the string, the second is the first stem of the helix
and the last, the second stem of the helix.

3 Preliminaries

Valuation structures are algebraic objects that allow to specify costs [7]. For
WCSP, it is defined by a triple S = 〈E,⊕,≤〉 where:

– E = [0..k] ⊆ N is the set of costs;
– ⊕ is the addition on E, defined by ∀(a, b) ∈ N

2, a ⊕ b = min{a + b, k};
– ≤ is the usual operator on N.

It is useful to define the subtraction ª of costs: ∀(a, b) ∈ N
2, aª b = a− b if a 6=

k, k otherwise.
A WCSP is a tuple P = 〈S,X ,D, C〉, where:

– S is the valuation structure,
– X = {x1, . . . , xn} is a set of n variables,
– D = {D(x1), . . . ,D(xn)} is the set of the finite domains of each variable and

the size of the largest one is d,
– C is a set containing e constraints.

A constraint c ∈ C can be:

– a unary constraint (c : D(xi) → E) and we call it ci;
– a binary constraint (c : D(xi) × D(xj) → E) and we call it cij ;
– an r-ary constraint (c : D(xi1) × . . . × D(xir

) → E).

However, we will restrict ourselves to the binary case, where no constraint has
an arity greater than 2. The following results could easily be extended to higher
arity constraints.

Given a tuple t ∈ D(xi1) × . . . × D(xir
), c(t) = k means that c forbids the

corresponding assignment. Another cost means the tuple is permitted by c with
the corresponding cost. The cost of a total assignment t ∈ D(x1)× . . .×D(xn),
noted V(t), is the sum over all the cost functions c(t), c ∈ C,
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We assume the existence of a unary constraint ci for every variable, and a
zero-arity constraint (i.e. a constant), noted c∅ (if no such constraint is defined,
we can always define dummy ones: ci is the null function, c∅ = 0). This zero-
arity constant gives a cost that should be paid for any assignment of the problem
and thus represents a lower bound of the cost of a solution. An assignment t
is consistent if V(t) < k. Finding a consistent assignment is a NP-complete
problem.

k − 1 represents the maximal acceptable cost. For the moment, it is fixed by
trial and error but we hope to find a better method soon.

4 Model

Each variable represents the position of an element of the motif in the sequence.
When the algorithm starts, the domain of every variable is the size of the se-
quence. The constraints are used to describe an element of the motif:

– The constraint string(word, xi) (cf. Fig. 3(a)) takes a possibly ambiguous
word (i.e. containing letters like N) and compares it to the subsequence that
begins at the index xi. The algorithm uses dynamic programming and gives
affine cost to the gaps.

– The constraint helix(xi, xj , xk, xl) (cf. Fig. 3(c)) gives a cost to an helix of
which the first stem is between xi and xj , and of which the second stem is
between xk and xl. It also uses an ad hoc dynamic programming algorithm
that takes into account affine gaps and the size of the helix to compute the
score.

– The constraint spacer(xi, xj , d1, d2) (cf. Fig. 3(b)) gives a null score if d1 ≤
x2−x1 ≤ d2. Otherwise, the cost is a piecewise linear function that increases
when x1 and x2 are getting too close or too far away from each other.

Within this model, finding all the solutions of the WCSP is finding all the
potential members of the family described by the set of constraints. Their costs
specify the adequation of the candidates to the given signature.

Example 2. Consider again the previous example. The motif could have been
modeled like in Fig. 2(c) by five variables (x1 to x5), a string constraint (ACGU),
four spacer constraints (the full lines) and a helix constraint (the dotted square).
The algorithm should give the result described in Fig. 2(d). As the candidate
perfectly matches the signature, its cost should by 0. Notice that a pseudo-knot
can be described by two helices like in Fig. 3(d).

5 Some local properties

WCSPs are usually solved with a branch-and-bound tree of which each node is
a partial assignment. To accelerate the search, local consistency properties are
widely used to transform the sub-problem at each node of the tree to an equiv-
alent, simpler one. The simplest local consistency property is node consistency
(NC*, cf. [6]).
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Fig. 3. The constraints used to represent the motifs: (a) string(xi, ACGU),
(b) spacer(xi, xj , d), (c) helix, (d) pseudo-knot with two helices, (e) a tRNA
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Definition 1. A variable xi is node consistent if:

– ∀vi ∈ D(xi), c∅ ⊕ ci(vi) < k and
– ∃vi ∈ D(xi), ci(vi) = 0 (this value vi is called the unary support of xi).

A WCSP is node consistent if every variable is node consistent.

This property can be enforced in time and space O(nd) for binary problems.
Another famous stronger local consistency is the arc consistency (AC*, cf. [6]).

Definition 2. The neighbours N(xi) of a variable xi is the set of the variables
xj such that there exists a constraint that involves xi and xj. A variable xi is
arc consistent if:

– ∀vi ∈ D(xi),∀xj ∈ N(xi),∃wj ∈ D(xj), cij(vi, wj) = 0 (this value wj is
called the support of xi in vi w.r.t. cij) and

– xi is node consistent.

A WCSP is arc consistent if every variable is arc consistent.

Arc consistency can be enforced in time O(n2d3) and in space O(ed) for
binary problems. Clearly, the space complexity is far too high for our kind of
problem. This is why we use a weaker form of this property: bound arc consistency
(BAC*).

Definition 3. To apply bound arc consistency, we need to change the definition
of a WCSP: the domains are now intervals I. Each variable xi can take all the
values in I(xi) = [lbi..ubi] (lbi is the lower bound of the interval of xi and ubi

is its upper bound).
A variable xi is bound node consistent (BNC*) if:

– (c∅ ⊕ ci(lbi) < k) ∧ (c∅ ⊕ ci(ubi) < k) and
– ∃vi ∈ I(xi), ci(vi) = 0.

A variable xi is bound arc consistent if:

– ∀xj ∈ N(xi),∃(wj , w
′
j) ∈ I2(xj), cij(lbi, wj) = cij(ubi, w

′
j) = 0 and

– it is bound node consistent.

A WCSP is bound arc consistent if every variable is bound arc consistent.

Theorem 1. The algorithm 1 enforces BAC* in time O(ed2+knd) and in space
O(n + e).

Proof. Correction: We will consider the following invariants:

1. on line 2, all variables are BNC*,
2. if xi is not in Q, then ∀xj ∈ N(xi), lbi, ubi, lbj and ubj have a support w.r.t.

cij .
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Algorithm 1: Algorithm enforcing BAC*

Procedure SetBAC*() [Enforce BAC*]

foreach xi ∈ X do SetBNC*(xi) ;1

Q ← X ; c∅ raised ← false ;
while (Q 6= ∅) do2

xj ← Q.pop() ;
foreach xi ∈ N(xj) do3

SetBSupport(xi, xj) ; SetBSupport(xj , xi) ;4

if (SetBNC*(xi)) then Q ← Q ∪ {xi} ;5

if (SetBNC*(xj)) then Q ← Q ∪ {xj} ;6

if (c∅ raised) then7

c∅ raised ← false ;
foreach xi ∈ X do8

if (SetBNC*(xi)) then Q ← Q ∪ {xi} ;9

Function SetBNC*(xi): boolean [Enforce BNC*]

changed ← false ;
while (lbi ≤ ubi) ∧ (c∅ ⊕ ci(lbi) ≥ k) do lbi ← lbi + 1 ; changed ← true ;
while (lbi ≤ ubi) ∧ (c∅ ⊕ ci(ubi) ≥ k) do ubi ← ubi − 1 ; changed ← true ;
ProjectUnary(xi) ;
return changed ;

Procedure ProjectUnary(xi) [Find the unary support of xi]

min ← minvi∈I(xi){ci(vi)} ;
if (min = 0) then return ;
c∅ raised ← true ;
foreach vi ∈ I(xi) do ci(vi) ← ci(vi) ª min ;
c∅ ← c∅ ⊕ min ;
if (c∅ ≥ k) then raise exception ;

Procedure Project(xi, vi, xj) [Find the support of vi ∈ {lbi, ubi} w.r.t. cij ]

min ← minwj∈I(xj){cij(vi, wj)} ;
foreach wj ∈ I(xj) do cij(vi, wj) ← cij(vi, wj) ª min ;
ci(vi) ← ci(vi) ⊕ min ;

Procedure SetBSupport(xi, xj) [Find the supports of the bounds of xi w.r.t. cij ]

Project(xi, lbi, xj) ; Project(xi, ubi, xj) ;
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First, ProjectUnary(xi) finds the unary support of xi and SetBNC*(xi) loops
until it finds the allowed bounds of xi, so this function enforces BNC*. At the
beginning of the algorithm, as the variables may not have this property, we call
SetBNC*(xi) for each variable xi. Thus the second invariant is respected at the
beginning of the algorithm.

This invariant may be broken by a projection from a binary constraint to a
bound of an interval; this may either lead to the fact that one of the bound is
now forbidden, or that a unary support (which was this bound) has disappeared.
This is why SetBNC* is called on xj and all its neighbours (lines 5 and 6) after
the projections of the line 4.

The first invariant could also be broken when c∅ increases: a bound can now
have a unary cost greater that k − c∅. This event can occur after the lines 5

and 6. This explains the if beginning at line 7.

Concerning the second invariant, it is true at the beginning of the algorithm
as all the variables are enqueued. Afterwards, Project(xi, vi, xj) finds the support
of vi w.r.t. cij , so SetBSupport(xi, xj) finds the supports of the bounds of xi w.r.t.
cij . Thus the line 4 enforces the second invariant.

This invariant can only be broken by SetBNC* and anytime this function is
called, the corresponding variable is enqueued. Finally, at the end of the algo-
rithm, the instance is BNC* (thanks to the first invariant) and every bound has
a support w.r.t. to each constraint in which it is involved (thanks to the second
invariant): the problem is now BAC*.

Time complexity: Thanks to [6], we know that Project and ProjectUnary
take time O(d). Thus SetBSupport also takes time O(d) and the complexity of
the line 1 is O(nd).

Each variable can be pushed in at most O(d) times into Q, thus the overall
complexity of the line 6 is O(nd2). The program enters in the loop of line 3

at most O(ed) times (given a constraint cij , the program can enter O(d) times
because of xi and O(d) times because of xj) thus the overall complexity of lines 4

and 5 is O(ed2). The line 7 can be true at most k times (otherwise the problem is
detected as inconsistent) and the overall complexity of the line 9 is O(k×n×d).
To sum up, this algorithm takes time O(nd2 + ed2 + knd) = O(ed2 + knd).
However, as the while on line 2 can be true at most O(nd) times, the foreach on
line 8 cannot loop more than O(n2d) times and the complexity of the line 9 is not
greater than O(n2d2). So the actual time complexity is O(ed2+min{k, nd}×nd),
and if k > nd then it is O(n2d2).

Space complexity: As described here, the algorithm has a space complexity
of O(ed). However, the we can bring the complexity down to O(e) as suggested
in [2], by using additionnal data structures.

6 Experimental results

We have tried to detect the well-known structure of tRNA [5] (cf. Fig. 3(e)),
modeled by 16 variables, 15 spacers, 3 strings and 4 helices on parts of the
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genome of Saccharomyces Cerevisiæ of different sizes and on the whole genome
of Escherichia coli.

In our implementation, every constraint is separated into its hard part (that
gives a cost of k) and its soft part (that gives a cost less than k). The hard
part is first treated to remove rapidly some obviously inadequate values through
2B-consistency (cf. [8]). Then, AC* or BAC* process the soft part.

We used a 2.4Ghz Intel Xeon with 8 GB RAM to solve these instances. We
compared our algorithm with the classic AC* on Fig. 4. For each instance of
the problem, we write its size (10k is sequence of 10.000 nucleotides and the
genome of Escherichia coli contains more than 4.6 millions nucleotides) and the
number of solutions. We also show the number of nodes explored and the time
in seconds spent. A “-” means the instance could not be solved due to memory
reasons despite all the memory optimizations.

AC* BAC*
Size ] solutions nodes time nodes time

10k 16 23 29 32 0
50k 16 35 545 39 0
100k 16 - - 51 0
500k 16 - - 194 1
1M 24 - - 414 2
ecoli 140 - - 1867 7

Fig. 4. Number of nodes explored and time in seconds spent to solve several instances
of the ncRNA detection problem

The reason of the superiority of BAC* over AC* is twofold. First, AC* needs
to store all the unary cost for every variable to project cost from binary con-
straints to unary constraint. Thus, the space complexity of AC* is at least O(nd).
For very long domains (in our experiment, greater than 50.000 values), the com-
puter cannot allocate sufficient memory and the program is aborted. For the
same kind of projection, BAC* only needs to store the costs of the bounds of
the domains, leading to a space complexity of O(n).

Second, the distance constraints dramatically reduce the size of the domains.
Concretely, when a single variable is assigned, and when all the distance costs
have been propagated, all the other domains have a size that is a constant with
respect to d. As BAC* behaves particularly well with this kind of constraints,
the instance becomes quickly tractable.

7 Conclusions and future work

In this paper we have applied the WCSP framework to the ncRNA detection
problem and introduced a new local consistency called BAC*. We have given
its complexity, which is lower than the commonly used algorithms and we have
shown that maintaining BAC* is better than AC* for our problem.
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In the future, we would like to implement other constraints such as hybridiza-
tion and add several heuristics.
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Mendelian error detection in complex pedigree
using weighted constraint satisfaction techniques

S. de Givry, I. Palhiere, Z. Vitezica and T. Schiex

INRA, Toulouse, France

Abstract. With the arrival of high throughput genotyping techniques,
the detection of likely genotyping errors is becoming an increasingly im-
portant problem. In this paper we are interested in errors that violate
Mendelian laws. The problem of deciding if Mendelian error exists in
a pedigree is NP-complete [1]. Existing tools dedicated to this problem
may offer different level of services: detect simple inconsistencies using
local reasoning, prove inconsistency, detect the source of error, propose
an optimal correction for the error. All assume that there is at most
one error. In this paper we show that the problem of error detection, of
determining the minimum number of error needed to explain the data
(with a possible error detection) and error correction can all be modeled
using soft constraint networks. Therefore, these problems provides at-
tractive benchmarks for weighted constraint network solvers such as the
dedicated WCSP solver toolbar.

1 Background

Chromosomes carry the genetic information of an individual. A position that
carries some specific information on a chromosome is called a locus (which typ-
ically identifies the position of a gene). The specific information contained at a
locus is the allele carried at the locus. Except for the sex chromosomes, diploid
individuals carry chromosomes in pair and therefore a single locus carries a pair
of allele. Each allele originates from one of the parents of the individual con-
sidered. This pair of alleles at this locus define the genotype of the individual
at this locus. Genotypes are not always completely observable and the indirect
observation of a genotype (its expression) is termed the phenotype. A pheno-
type can be considered as a set of possible genotypes for the individual. These
genotypes are said to be compatible with the phenotype.

A pedigree is defined by a set of related individuals together with associated
phenotypes for some locus. Every individual is either a founder (no parents in the
pedigree) or not. In this latter case, the parents of the individual are identified
inside the pedigree. Because a pedigree is built from a combination of complex
experimental processes it may involve experimental and human errors. The errors
can be classified as parental errors or typing errors. A parental error means that
the very structure of the pedigree is incorrect: one parent of one individual
is not actually the parent indicated in the pedigree. We assume that parental
information is correct. A phenotype error means simply that the phenotype in the
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pedigree is incompatible with the true (unknown) genotype. Phenotype errors are
called Mendelian errors when they make a pedigree inconsistent with Mendelian
law of inheritance which states that the pair of alleles of every individual is
composed of one paternal and one maternal allele. The fact that at least one
Mendelian error exists can be effectively proven by showing that every possible
combination of compatible genotypes for all the individual violates this law at
least once. Since the number of these combinations grows exponentially with the
number of individuals, only tiny pedigree can be checked by enumeration. The
problem of checking pedigree consistency is actually shown to be NP-complete
in [1]. Other errors are called non Mendelian errors1.

The detection and correction of errors is crucial before the data can be ex-
ploited for the construction of the genetic map of a new organism (genetic map-
ping) or the localization of genes (loci) related to diseases or other quantitative
traits. Because of its NP-completeness, most existing tools only offer a limited
polynomial time checking procedure. The only tool we know that really tack-
les this problem is PedCheck [10,11], although the program is restricted by a
single error assumption. Evaluation of animal pedigrees with thousand of an-
imals, including many loops (a marriage between two individuals which have
a parental relation) (resulting in large tree-width) and without assuming the
unlikely uniqueness of errors requires further improvements.

In this paper, we introduce soft constraint network models for the problem of
checking consistency, the problem of determining the minimum number of errors
needed to explain the data and the problem of proposing an optimal correction to
an error. These problems offer attractive benchmarks for (weighted) constraint
satisfaction. We report preliminary results using the weighted constraint network
solver toolbar.

2 Modeling the problems

A constraint satisfaction network (X,D,C) [3] is defined by a set of variables
X = {x1, . . . , xn}, a set of matching domains D = {d1, . . . , dn} and a set of
constraints C. Every variable xi ∈ X takes its value in the associated domain
di. A constraint cS ∈ C is defined as a relation on a set of variables S ⊂ X
which defines authorized combination of values for variables in S. Alternatively,
a constraint may be seen as the characteristic function of this set of authorized
tuples. It maps authorized tuples to the boolean true (or 1) and other tuples to
false (or 0). The set S is called the scope of the constraint and |S| is the arity of
the constraint. For arities of one, two or three, the constraint is respectively said
to be unary, binary or ternary. A constraint may be defined by a predicate that
decides if a combination is authorized or not, or simply as a set of combination of
values which are authorized. For example, if d1 = {1, 2, 3} and d2 = {2, 3}, two
possible equivalent definitions for a constraint on x1 and x2 would be x1+1 > x2

or {(2, 2), (3, 2), (3, 3)}.

1Non Mendelian errors may be identified only in a probabilistic way using several
locus simultaneously and a probabilistic model of recombination and errors [4].
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The central problem of constraint networks is to give a value to each variable
in such a way that no constraint is violated (only authorized combinations are
used). Such a variable assignment is called a solution of the network. The problem
of finding such a solution is called the Constraint Satisfaction Problem

(CSP). Proving the existence of a solution for an arbitrary network is an NP-
complete problem.

Often, tuples are not just completely authorized or forbidden but autho-
rized and forbidden to some extent or at some cost. Several ways to model such
problems have been proposed among which the most famous are the semi-ring
and the valued constraint networks frameworks [2]. In this paper we consider
weighted constraint networks (WCN) where constraints map tuples to non neg-
ative integers. For every constraint cS ∈ C, and every variable assignment A,
cS(A[S]) ∈ N represents the cost of the constraint for the given assignment
where A[S] is the projection of A on the constraint scope S. The aim is then
to find an assignment A of all variables such that the sum of all tuple costs
∑

cS∈C cS(A[S]) is minimum. This is called the Weighted Constraint Satisfac-
tion Problem (WCSP), obviously NP-hard. Several recent algorithms for tackling
this problem, all based on the maintenance of local consistency properties [13]
have been recently proposed [9,7].

2.1 Genotyped pedigree and constraint networks

Consider a pedigree defined by a set I of individuals. For a given individual
i ∈ I, we note pa(i) the set of parents of i. Either pa(i) 6= ∅ (non founder)
or pa(i) = ∅ (founder). At the locus considered, the set of possible alleles is
denoted by A = 1, ...,m. Therefore, each individual carries a genotype defined
as an unordered pair of alleles (one allele from each parent, both alleles can be
identical). The set of all possible genotypes is denoted by G and has cardinality
m(m+1)

2 . For a given genotype g ∈ G, the two corresponding alleles are denoted
by gl and gr and the genotype is also denoted as gl|gr. By convention, gl ≤ gr

in order to break symmetries between equivalent genotypes (e.g. 1|2 and 2|1).
The experimental data is made of phenotypes. For each individual in the set of
observed individuals I ′ ⊂ I, its observed phenotype restricts the set of possible
genotypes to those which are compatible with the observed phenotype. This set
is denoted by G(i) (very often G(i) is a singleton, observation is complete).

A corresponding constraint network encoding this information uses one vari-
able per individual i.e. X = I. The domain of every variable i ∈ X is simply
defined as the set of all possible genotypes G. If an individual i has an observed
phenotype, a unary constraint that involves the variable i and authorizes the
genotypes in G(i) is added to the network. Finally, to encode Mendelian law,
and for every non founder individual i ∈ X, a single ternary constraint involving
i and the two parents of i, pa(i) = {j, k} is added. This constraint only autho-
rizes triples (gi, gj , gk) of genotypes that verify Mendelian inheritance i.e. such
that one allele of gi appears in gj and the other appears in gk. Equivalently:

(gl
i ∈ gj ∧ gr

i ∈ gk) ∨ (gl
i ∈ gk ∧ gr

i ∈ gj)
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For a pedigree with n individuals among which there are f founders, with
m possible alleles, we obtain a final CN with n variables, a maximum domain

size of m(m+1)
2 and n− f ternary constraints. Existing problems may have more

than 10,000 individuals with several alleles (the typical number of alleles varies
from two to a dozen).

A small example is given in Fig. 1. There are n = 12 individuals and m = 3
distinct alleles. Each box corresponds to a male individual, and each ellipse
to a female. The arcs describe parental relations. For instance, individuals 1
and 2 have three children 3,4, and 5. The founders are individuals 1,2,6, and
7 (f = 4). The possible genotypes are G = {1|1, 1|2, 1|3, 2|2, 2|3, 3|3}. There
are 7 individuals (1,3,6,7,10,11, and 12) with an observed phenotype (a single
genotype). The corresponding CSP has 12 variables, with maximum domain size
of 6, and 8 ternary constraints. This problem is inconsistent.

A solution of this constraint network defines a genotype for each individ-
ual that respects Mendelian law (ternary constraints) and experimental data
(domains) and the consistency of this constraint network is therefore obviously
equivalent to the consistency of the original pedigree. As such, pedigree con-
sistency checking offers a direct problem for constraint networks. In practice,
solving this problem is not enough (i) if the problem is consistent, one should
simplify the problem for further probabilistic processing by removing all values
(genotypes) which do not participate in any solution, this specific problem is
known as “genotype elimination”, (ii) if the problem is inconsistent, errors have
to be located and corrected.

36457

1 2

89

10 11 12

2/2

2/2

2/2 2/2

2/31/22/2

Fig. 1. Pedigree example taken from [11] with 12 individuals.
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3 Error detection

From an inconsistent pedigree, the first problem is to identify errors. In our
knowledge, this problem is not perfectly addressed by any existing programs
which either identify a not necessarily minimum cardinality set of individuals
that only restore a form of local consistency or make the assumption that a single
error occurs. The first approach may detect too many errors that moreover may
not suffice to remove global inconsistency and the second approach is limited to
small datasets (even high quality automated genotyping may generate several
errors on large datasets).

A typing error for individual i ∈ X means that the domain of variable i
has been wrongly reduced: the true (unknown) value of i has been removed. To
model the possibility of such errors, genotypes in G which are incompatible with
the observed phenotype G(i) should not be completely forbidden. Instead, a soft
constraint forbids them with a cost of 1 (since using such a value represents
one typing error). We thereby obtain a weighted constraint network with the
same variables as before, the same hard ternary constraints for Mendelian laws
and soft unary constraints for modeling genotyping information. Domains are
all equal to G.

If we consider an assignment of all variables as indicating the real genotype
of all individuals, it is clear that the sum of all the costs induced by all unary
constraints on this assignment precisely gives the number of errors made during
typing. Finding an assignment with a minimum number of errors follows the
traditional parsimony principle (or Ockham’s razor) and is consistent with a low
probability of independent errors (quite reasonable here). One solution of the
corresponding WCSP with a minimum cost therefore defines a possible diagnos-
tic (variable assigned with a value forbidden by G(i) represent one error).These
networks have the same size as the previous networks with the difference that all
variables now have the maximum domain size |G|. The fundamental difference
lies in the shift from satisfaction to optimization. The fact that only unary soft
constraints arise here is not a simplification in itself w.r.t. the general WCSP
since every n-ary weighted constraint network can be simply translated in an
equivalent dual network with only unary soft constraints and hard binary con-
straints [8].

In the previous example of Fig. 1, the problem still has 12 variables, with
domain size of 6. It has 8 hard ternary constraints and 7 soft unary constraints.
The minimum number of typing errors is one. There are 66 optimal solutions
of cost one, which can occur in any of the typed individuals except individual
10. One optimal solution is {(1, 2|2), (2, 1|2), (3, 2|2), (4, 1|2), (5, 2|2), (6, 2|2),
(7, 2|2), (8, 1|2), (9, 2|2), (10, 2|2), (11, 1|2), (12, 2|2)} such that the erroneous
typing 2|3 of individual 12 has been changed to 2|2.

3.1 Error correction

When errors are detected, one would like to optimally correct them. The sim-
ple parsimony criterion is usually not sufficient to distinguish alternative values.
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More information needs to be taken into account. Errors and Mendelian inher-
itance being typically stochastic processes, a probabilistic model is attractive.
A Bayesian network is a network of variables related by conditional probability
tables (CPT) forming a directed acyclic graph. It allows to concisely describe
a probability distribution on stochastic variables. To model errors, a usual ap-
proach is to distinguish the observation O and the truth T . A CPT P (O|T )
relates the two variables and models the probability of error.

Following this, we consider the following model for error correction: we first
have a set of n variables Ti each representing the true (unknown) genotype of
individual i. The domain is G. For every observed phenotype, an extra observed
variable Oi is introduced. It is related to the corresponding true genotype by the
CPT P e

i (Oi|Ti). In our case, we assume that there is a constant α probability of
error: the probability of observing the true genotype is 1−α and the remaining
probability mass is equally distributed among remaining values.

For the individual i and its parents pa(i), a CPT Pm
i (Ti|pa(i)) represent-

ing Mendelian inheritance connects Ti and its corresponding parents variables.
Each parent having two alleles, there are four possible combinations for the chil-
dren and all combinations are equiprobable (probability 1

4 ). However, since all
parental alleles are not always different, a single children genotype will have a
probability of 1

4 times the number of combination of the parental alleles that
produce this genotype.

Finally, prior probabilities P f (i) for each genotype must be given for every
founder i. These probabilities are obtained by directly estimating the frequency
of every allele in the genotyped population. For a genotype, its probability is
obtained by multiplying each allele frequency by the number of way this genotype
can be built (a genotype a|b can be obtained in two ways by selecting a a from
a father and a b from the mother or the converse. If both alleles are equal
there is only one way to achieve the genotype). The probability of a complete
assignment P (O, T ) (all true and observed values) is then defined as the product
of the three collections of probabilities (P e, Pm and P f ). Note that equivalently,
its log-probability is equal to the sum of the logarithms of all these probabilities.

The evidence given by the observed phenotypes G(i) is taken into account by
reducing the domains of the Oi variables to G(i). One should then look for an
assignment of the variables Ti, i ∈ I ′ which has a maximum a posteriori proba-
bility (MAP). The MAP probability of such an assignment is defined as the sum
of the probabilities of all complete assignments extending it and maximizing it
defines an NPPP -complete problem [12], for which no exact methods exist that
can tackle large problems. PedCheck tries to solve this problem using the extra
assumption of a unique already identified error. This is not applicable in large
datasets either. Another very strong assumption (known as the Viterbi assump-
tion) considers that the distribution is entirely concentrated in its maximum
and reduces MAP to the so-called Maximum Probability Explanation problem
(MPE) which simply aims at finding a complete assignment of maximum prob-
ability. Using logarithms as mentioned above, this problem directly reduces to
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a WCSP problem where each CPT is transformed in an additive cost function.
This allows to solve MPE using the dedicated algorithms introduced in toolbar.

Taken the pedigree example given in Fig. 1, we computed the maximum
likelihood P (O, T |e) for all possible minimal error corrections using toolbar

with the MPE formulation. Note that only one correction is needed here to
suppress all Mendelian errors. For a given error correction Tj = g, the given
evidence e corresponds to reducing the domains of all the Oi and Ti variables to
G(i), except for Tj which is assigned to g. We used equifrequent allele frequencies
P f (i) for the founders and a typing error probability α = 5%. The results are

given in Table 1. The ratio P (O,T |e)best

P (O,T |e) is the ratio between the best found

maximum likelihood for any correction and the maximum likelihood for a given
correction. The results shown that either individual 11 or 12 is the most likely
source of the error. Optimal corrections with respect to the Viterbi assumption
are either T11 = 2|2, or T11 = 2|3, or T12 = 1|2, or T12 = 2|2.

Individual Correction P (O, T |e) P (O,T |e)best

P (O,T |e)

1 1|2 3.462e − 10 128.0
1 2|3 3.462e − 10 128.0
3 1|2 2.77e − 09 16.0
3 2|3 2.77e − 09 16.0
6 1|1 5.539e − 09 8.0
6 1|2 2.77e − 09 16.0
6 1|3 2.77e − 09 16.0
6 2|3 2.77e − 09 16.0
6 3|3 5.539e − 09 8.0
7 1|1 5.539e − 09 8.0
7 1|2 2.77e − 09 16.0
7 1|3 2.77e − 09 16.0
7 2|3 2.77e − 09 16.0
7 3|3 5.539e − 09 8.0
11 2|2 4.431e − 08 1.0
11 2|3 4.431e − 08 1.0
11 3|3 5.539e − 09 8.0
12 1|1 5.539e − 09 8.0
12 1|2 4.431e − 08 1.0
12 2|2 4.431e − 08 1.0

Table 1. Likelihood ratios for possible error corrections for the problem given in Fig.1.

4 Conclusion

Preliminary experiments on the applicability of WCSP techniques to these prob-
lems have been made. The first real data sets are human pedigree data presented
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in [10,11]. For all these problems, toolbar solves the consistency, error minimiza-
tion and correction (MPE) problems very rapidly.

The real challenge lies in a real 129,516 individual pedigree of sheeps (sheep4n),
among which 2,483 are typed with 4 alleles and 20,266 are founders. By removing
uninformative individuals, it can be reduced to a still challenging 8,990 individ-
ual pedigree (sheep4nr) among which 2,481 are typed and 1,185 are founders.
As an animal pedigree, it contains many loops and the min-fill heuristics gives
a 226 tree-width bound. From the reduced pedigree sheep4nr, we removed some
simple nuclear-family typing errors by removing parental and typing data of
the corresponding erroneous children, resulting in a 8,920 individual pedigree
(sheep4r) among which 2,446 are typed and 1,186 are founders. We solved the
error detection problem (Section 3) using a decomposition approach. We used
the hypergraph partitioning software shmetis2 [6] using multilevel recursive bi-
section with imbalance factor equal to 5% to partition the sheep4r hypergraph
into four parts. Among the 8,662 hyperedges (each hyperedge connects one child
to its parents), 1,676 have been cut, resulting into four independent subproblems
described in Table 2. This table gives the minimum number of typing errors (Op-
timum), and if non zero and equal to one, the list of individual identifiers such
that removing one typing will suppress all Mendelian errors. The experiments
were performed on a 2.4 GHz Xeon computer with 8 GB. The Table reports
CPU time needed by toolbar and PedCheck [10,11] (level 3) to find the list of
erroneous individuals. We used default parameters for toolbar except a pre-
projection of ternary constraints into binary constraints, a singleton consistency
preprocessing [5], and an initial upper bound equal to two. Recall that PedCheck
is restricted by a single error assumption.

Instance N. of individuals Optimum Errors toolbar PedCheck

CPU time CPU time

sheep4r 4 0 1,944 0 ∅ 33.3 sec 27.1 sec
sheep4r 4 1 2,037 0 ∅ 35.7 sec 28.2 sec
sheep4r 4 2 2,254 1 {126033} 124.2 sec 3 hours 51 min
sheep4r 4 3 2,685 1 {119506, 128090, 295.0 sec 7 hours 25 min

128091, 128092}

Table 2. Error detection for a large pedigree sheep4r decomposed into four independent
weighted CSPs.

By removing two typings in sheep4r (individuals 126033 for sheep4r 4 2 and
119506 for sheep4r 4 3), we found that the modified pedigree has no Mendelian
errors.

These problems have been made available as benchmarks on the toolbar

web site (carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP) for classical, weighted
CSP and Bayesian net algorithmicists.

2http://www-users.cs.umn.edu/~karypis/metis/hmetis/index.html.
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Abstract. We address the issue of predicting disulfide bonds in protein
sequences. The knowledge of the state of cysteines is important since they
are frequently involved in active sites or give information on the cellular
location of proteins, and the formation of covalent links between them is
now widely accepted as a key step in the 3D structure prediction task. We
propose to tackle with the problem of prediction of interactions between
cysteines in the framework of inductive logic programming (ILP). We
obtain explicit rules of prediction, whose biological validity needs further
investigation.
Contact: ijacquem@irisa.fr

1 The biological problem

The main properties of proteins may be determined from their three-dimensional
structure. There are close to or even more than 1 million known sequences but
only relatively few known folds (about 10 000 in the Protein Data Bank). Bridg-
ing this “knowledge gap” requires automatic methods capable of inferring folds
from sequences. Our contribution to this ambitious goal addresses the predic-
tion of particular interactions inside these macro-molecules. The tertiary folds of
native proteins are defined by a large number of weak interactions. Proteins are
also stabilized covalently by disulfide bonds formed by a pair of cysteine residues
in the folded state. We focus on the prediction of these disulfide bonds. A disul-
fide bond is formed by the oxidative linkage of two cysteines through their thiol
groups. In proteins some cysteines, called cystines, are oxidized and the oth-
ers are called free cysteines. The correct prediction of this type of bonds could
be of great help in reducing the complexity of the three-dimensional structure
prediction problem, by constraining the global shape of the predicted protein,
there exist a lot of articles like [5,7,15,2,21]. Errami et al.[8] describe a strategy
to perform an exhaustive and objective statistical analysis of three-dimensional
structures of proteins. They have shown that amino-acids implied in disulfide
bonds are particularly well conserved because the conservation of a fold is due
to the conservation of global physico-chemical properties instead of the conser-
vation of weak interactions.
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In such a context, two issues of increasing difficulty have to be distinguished:

1. Is it possible to predict the implication of a given cysteine is implied in a
disulfide bridge only with the knowledge of its context?

2. Is it possible to predict which pairs of cysteines are connected with a disulfide
bridge within a given protein?

A number of works have addressed the first issue. We have not the place to
quote all the work but we can cite the most recent one: in 2004, Song et al.
have worked on a simpler linear discriminator based on dipeptide composition
of proteins ([24]). The prediction was performed with a new even larger dataset
with 8114 cysteine-containing segments extracted from 1856 non-homologous
proteins of well-resolved three-dimensional structures. The prediction accuracy
of the oxidation form of cysteines scores is as high as 89%. We can also notice the
best score of 90% in overall prediction accuracy obtained by [4] who use the SVM
method based on multiple feature vectors (combining local sequences and global
amino acid compositions) coupled with cysteine state sequences. Very few studies
have worked on the second issue. Casadio et al.[3] have worked on the location
of disulfide bridges when candidate cystines are known. Their method is based
on a weighted graph representation of disulfide bridges. Each vertex represents
oxidized cysteines and undirected edges are labeled by contact potential of the
associated pair of cysteines. The most recent work is presented by Vullo et al.[31],
they have developed an ad-hoc RNN architecture for scoring labeled undirected
graphs that represent connectivity patterns. In this paper we propose a novel
approach using the inductive logic programming (ILP) framework to work on
both problems in an integrated way. Our goal is to infer specific patterns on
physico-chemical properties of amino acids around cystines. We present in this
paper only the first issue because the second one is on the way.

2 Progol

Inductive logic programming is at the intersection of machine learning and logic
programming: examples of the training set are expressed as logical assertions and
the result of learning is a logic program, i.e. a set of definite clauses. ILP has
been applied successfully in a large number of applications in structural biology.
Muggleton et al. have written several articles using ILP to learn protein three-
dimensional fold signatures [6,30,26]. They have shown that their rules can be
explained in terms of structural and/or functional concepts, such as active site
location. A few programs for ILP are available. For prototyping, we have worked
with the very flexible environment Aleph[25]. For more efficient programming
we have used Progol[23,18], available at [20].
Structures of proteins are the result of complex interactions between sub-structures.
For this reason, ILP algorithms, that learn relations between data and not only
the prediction functions, which seems to be particularly relevant for this type of
data. Another advantage of inductive learning, with respect to heterogeneous sets
of data like protein sequences, is the by-product clustering into subgroups that is
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achieved by the production of a set of prediction rules. The main difficulty about
a large use of ILP techniques is that, like most combinatorial machine learning
methods, ILP needs a careful tuning of many parameters. Solving a problem
needs to choose a trade-off between the size of the hypothesis space to explore
and the discriminating power of the corresponding level of expressiveness. One
can distinguish three types of tasks towards this goal:
The first one consists of designing an adequate representation of training in-
stances together with the background knowledge. Training instances are coded as
logical facts, using the special purpose predicate example in Progol. Background
knowledge is represented as a set of standard Prolog clauses, that is, definite
clauses. It is an essential component in the learning strategy, containing the
definition of potentially interesting relations, and integrity constraints. Back-
ground knowledge ensures the capacity of inferred relations both to predict new
instances of the concept to be learned and to explain in an interpretable way
the characteristics of this concept. This differs clearly from the methods such as
neural networks where it is difficult to interpret classifiers.
The second task is the specification of the hypothesis space. This is achieved in
Progol via head-and-body mode declarations (modeh and modeb predicates), to-
gether with types declarations. The general rules Body ⇒ Head constructed by
Progol are constrained to use only the indicated predicates, variables and con-
stants. It then delineates a finite, generally huge space called Herbrand universe.
This space is further reduced by applying prune, a user-definable predicate de-
scribing rules that are not valid in the previous space.
The last task concerns various parameters influencing the strategy and complex-
ity of the search. For instance one can fix the maximum number of rules explored
during the search, specify the maximum length of the body of the general rules
which Progol constructs, allow rules to predict a small percentage of the negative
instances (noise level) or set Progol to learn from positive examples only. For
more details readers can report to the Progol manual[19].

3 The experimentation

3.1 Disulfide bonds databases and example representation

As usual in machine learning, the quality of initial data is crucial with respect
to the quality of the results. Most authors extract disulfide bonds from proteins
in the current release of SwissProt[27], for which intra-chains disulfide bonds are
known. Since a few years, disulfide bond determination has been made easier [13],
and a number of annotations progressively become available. However, one must
clearly distinguish, between experimentally verified and predicted bonds (by
similarity, potential, probable...). Actually, less than 12% of annotated disulfide
bonds (in 16% of proteins) are determined experimentally ! In 2004, a number
of efforts have lead to databases of disulfide patterns. In [14], a method based on
SwissProt and Pfam[22] multiple alignments databases leads to 94499 disulfide
patterns, but authors give no access to the corresponding database. The training
database we used was provided by Dominique Tessier, who carefully selected a
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set of chains from a pdb select 25 dataset. They contain at least one disulfide
bond annotation and are extracted from eukaryotic cells. In her paper[29], she
points to the fact that signal peptides and subcellular locations are the primary
descriptors that must be considered, if available, for the prediction of the bonded
state of cysteines. We selected in her database extracellular proteins with intra-
molecular disulfide bonds. We worked on a training set containing about 722
positive (oxidized cysteines) and 47 negative (free cysteines) sequences. We have
only 47 negative sequences because we worked with proteins becoming from the
same environment which favours disulfide bonds. A number of descriptors are
available, some of them being very discriminant such as the presence of signal
peptides. We use a second database, available at [1], to validate our results. It was
provided by C.Geourjon during the ACI GenoTo3D and contains 1129 positive
sequences. We have taken out the redundant sequences of the two databases.
However, we have restricted ourselves to the simplest information of the primary
sequence. Indeed, we are not only interested in the prediction of the state of
cysteines, but we try also to understand how pairing of cysteines is determined
depending on the sequence. We have used the common assumption that the
presence of a bond between two cysteines is correlated with the local environment
of neighborings residues in the 3D spatial conformation of the protein. Most
authors suggest that it might be sufficient to extract from the primary sequence
a context window of 11 residues centered around cysteines. We have chosen
a slightly higher value, representing disulfide bridges with pairs of windows of
length 14 (1 window for each cysteine, 7 amino-acids on each side of the cysteine).
This allows to take into account more residues that are close with respect to the
3D structure but more distant on the primary chain. From the set of positive
context sequences, we have extracted 260 pairs of sequences corresponding to
disulfide bonds.
As seen in figure 1, an example is thus represented as a predicate with one

. . . a f e k v y d p l y c e s v h n f t y d s . . .

right([e,s,v,h,n,f,t])left([k,v,y,d,p,l,y])

exampleexample

example(context([k,v,y,d,p,l,y,e,s,v,h,n,f,t])).

right contextleft context

Fig. 1. Examples : selection of two windows on each side of a cysteine in a protein.

argument, example(Context), where Context describes a window of 14 amino-
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acids, seven amino-acids on each side of cysteines. For positive instances, this
window contains amino-acids around cystines whereas for negative examples this
window represents amino-acids around free cysteines in the protein.

3.2 Hypothesis Space for the cysteine state prediction problem

The first issue we have addressed is to characterize the windows of amino-acids
around oxidized cysteines. Our approach relies on finding detailed relevant prop-
erties of sub-sequences in such windows. Since our aim is to reveal a maximum
number of potential relations between some complexes of residues, we combine
logical and statistical aspects: the final property is a conjunction of patterns on
sub-sequences, but the search of patterns themselves corresponds to studying
the composition in sub-windows of fixed size. We start with some definitions
precising the formal setting of the corresponding hypothesis space.

Definition 1. Let S be a sequence on alphabet Σ, then W1...Wk ∈ Σk is a
sub-sequence of S iff ∃u1...uk+1 ∈ Σ?, S = u1W1...ukWkuk+1

Definition 2. Let S be a sequence on alphabet Σ, then a k-pattern is a con-
junction of sub-sequences of properties P1&...&Pl of S, that is true iff

∃v1...vk ∈ Σk, a sub-word (ie. a sub-sequence without gap) of S and
∃L a labelling from {v1, ..., vk} to {v11...vlm(l)} such that
∀i ∈ [1, l], (vi1...vim(i) is a sub-sequence of v1...vk and Pi = pi1...pim(i) ⇒
∀j ∈ [1,m(i)], pij(vij))., where pij denote elementary properties of letters
(in the sequence of amino-acids).

. . . a f e k v y d p l y e s v h n f t y d s . . .

Fig. 2. Sub-Window for detecting pat-
terns of length 4 in the context of a
cysteine

−7  −6  −5  −4  −3  −2  −1   C   1   2   3   4   5   6   7

subwindow position −6

left overlap

closefar

right

far

subwindow position −1

Fig. 3. Values of position attribute
with respect to sub-window’s start-
ing position (context of size 14, sub-
window of size 4)

The hypothesis space is made of conjunctions of k-patterns. In our experi-
ments, we have fixed k to 4, and thus properties are checked on sub-windows of
length 4 inside the cysteine context (see figure 2).

60



Sub-sequences of properties are predicates denoted by words p1...pm of physico-
chemical properties that are true iff the corresponding sub-sequence v1...vm ver-
ify all the given physico-chemical properties. We have used for this purpose
the Taylor diagram[28], which is a Venn diagram specifying relevant groups of
amino-acids. Note that it is useful to add the whole class X of amino-acids to this
diagram. Indeed, this allows to introduce “don’t-care” positions in the model.
Since this is useful only for reasonable sizes of subwords, this universal property
will be added directly to the set of allowed arrangements of sub-sequences (see
below the description of sub-sequence types in the background knowledge).
For example, consider the following context around a cysteine:
example(AARDHEW,AGNGIFQ). Then, [cccc ∧ ssss] or [(+ + & − −) ∧
(hs&GG)], where c, s, +, -, h, G denote respectively properties charged, small,
positive, negative, hydrophobic and amino-acid G, are valid conjunctions of 4-
patterns, true on the subwords RDHE and AGNG of the example (at positions
-5 and +1 with respect to the cysteine). cccc reflects the fact that all amino-acids
of RDHE are charged and (++&−−) reflects the fact that sub-sequences RH
and DE are respectively positively and negatively charged.
In fact, keeping the exact position of each sub-window in the context might
lead to overspecialized prediction rules. We have chosen to retain only a limited
number of types for each sub-window, in a qualitative position attribute,which
values belong to the set {overlap, close, far, left, right} (see figure 3).

The corresponding hypothesis space is huge and we have to limit the number
of conjuncts: given that each amino acid shares 4 elementary properties on the
average, with sub-windows of size k = 4, and 6 possible types of sub-windows.
Then, there exist 256 possible instantiations of properties for a given sub-window
and 19 possible arrangements of sub-sequences, giving 5∗256∗19 = 24320 possi-
ble typed 4-patterns. Even if we restrict ourselves to a maximum of 3 conjuncts,
the size of the space is roughly 243203 = 1.5 1013.
Our algorithm explores this space with a two-level search. The first level aims
at discovering a relevant subspace of the Herbrand universe, by sampling a re-
stricted subset of hypotheses. The second level aims at discovering prediction
rules, using this time the restricted Herbrand universe and the whole hypothesis
space. Note that this methodology is not application-dependant and can be used
as a general heuristics strategy in ILP. The first hypothesis space is restricted
both at the level of k-patterns (no type is introduced) and at the level of the
length of produced clauses (at most two). The level of noise in the first level is
greater than the level of noise in the second stage, since the hypothesis space
contains more general clauses and could therefore cover more negative instances.

The hypothesis space is described and organized in the background knowledge
of the Progol program. Practically, sub-sequences of properties are enumerated
using a pattern predicate that works on sub-windows of size k. For k = 4, several
types of patterns are possible: quatuor, quatuor1, quatuor2, quatuor3, quatuor4,
triplet, triplet1 and pair. Quatuor is just a subword of size 4 and quatuor1,
quatuor2, quatuor3, quatuor4 introduce exactly one “don’t-care” character at
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position 1, 2, 3, 4 respectively; triplet denotes two sub-sequences of size 3 and 1
and triplet1 denotes a sub-sequence of size 3 and one don’t care; and pair denotes
two sub-sequences of size 2 and 2. For instance, if s, p and h denote respectively
properties small, polar and hydrophobic :

– quatuor(h,h,s,p) represents the pattern hhsp and means that all properties
must appear in this exact order in the context around a cystine.

– quatuor1(x,h,h,p) (resp. quatuor2(h,x,h,p), quatuor3(h,h,x,p), quatuor4(h,h,p,x))
represents the pattern xhhp and means that all properties must appear in
this exact order in the context, including any value at the first position (resp.
at the second, third, fourth position)

– triplet(h,h,h,s) represents the pattern hhh&s, requiring in a sub-window of
size 4 in the context around a cystine, both a hydrophobic sub-sequence of
size 3 and a small amino-acid. Possible arrangements: shhh, hshh, hhsh, hhhs.

– triplet1(h,h,h) represents the pattern hhh&x and requires in a sub-window
of size 4 in the context around a cystine a hydrophobic sub-sequence of size
3. Possible arrangements are xhhh, hxhh, hhxh and hhhx.

– pair(h,h,p,p) represents the pattern hh&pp and means that in a sub-window
of size 4 in the context around a cysteine, one can find both a hydrophobic
sub-sequence of size 2 and a polar sub-sequence of size 2. Possible arrange-
ments are hhpp, hphp, hpph, pphh, phph and phhp.

The set of properties are coded using a tree reflecting the inclusion dependencies
among properties. More precisely, we used the “single trick” representation that
is often used in Machine learning, coding amino-acids and their properties within
the same representation. Based on the set of trees property(hydrophobic(other/
aliphatic/aromatic), polar(other/charged(positive/negative)), small(other/tiny)),
amino-acids are fully instantiated trees and properties are partially instantiated
trees. For instance, the amino-acid G is coded as tree(hydrophobic(other),false,
small(tiny)) and the property small is coded as tree(X,Y,small(Z)), where X,
Y and Z are variables. During stage 2, the background knowledge is increased
with the list of patterns extracted from induced rules. The definition of typed-
pattern differs from pattern on two points : first, patterns are instantiated using
the Herbrand universe of phase 1. Then, the sub-window type is computed during
sub-window extraction.

4 Results

First, we have allowed Progol to find rules which can cover 0 to 8 negative in-
stances (noise is allowed). We have obtained 32 rules and we have put them in
our background knowledge(BK) for the second stage. Next, we allowed Progol
to cover less negative examples, between 0 to 6 and we introduce the typed k-
pattern definition defined in the section 3.2. We have obtained 27 rules which
have been added to our BK for the third stage. For this one, noise is not permit-
ted and Progol has to find rules using the rules it has found before or building
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Table 1. Patterns obtained with Progol and their cover

Pattern P3 %DT DT CG %CG Pattern P3 %DT DT CG %CG

h3hh3h1-close 19 137 218 19 h1tts 89 87 163 87
sshc hh3ht 35 173 280 37 h1ssh3 ssh1h1 91 65 107 88
sshc ppc 45 162 262 47 phhs phhsfar ptps 92 113 173 89
hh2c1h-close 52 90 142 53 sc2ss tsc2s 93 101 162 90
c2sss pchh 62 148 235 62 cth2p sph 94 75 112 91
h3sc pph1 66 100 178 66 sh1pp-far 95 52 110 92
ph3h3h2 ppsh3 73 171 290 74 h2ph1h h3ps 96 70 95 92
h2pc2p-close 76 43 56 75 h3hhh3 shh3-right spps 97 153 224 93
hh2t-close 78 62 114 77 h1hts-left 98 86 141 93
h3sc-left 79 139 217 80 tpps h2pp-close 98 53 74 94
h3h1h ssh3s 83 118 205 82 h1sth 98 80 153 94
c1pc2p-close 84 43 72 83 pph1s tpps-far sppp 99 18 37 94
shh3 sc1sp 87 139 191 85 h1stc1-right 99 26 49 94

h=hydrophobic h1=h(aliphatic) h2=h(aromatic) h3=h(other) t=tiny c=charged
c1=c(positive) c2=c(negative) c3=c(other) p=polar s=small a=aliphatic +=positive
%DT(resp.%CG)=sum of examples cover with D.Tessier(resp.C.Geourjon)’s database
DT(resp.CG)=number of examples cover in the D.Tessier(resp.C.Geourjon)’s database

new ones. We have obtained 26 rules which can be seen in table 1. This ta-
ble contains 5 columns: the first one represents rules that Progol has built, a
conjunction of typed k-patterns and k-patterns. The second column represents
the percentage of examples (positive) covered in our database (the D. Tessier’s
database); the third one represents the number of positive examples covered by
each rule in our database and the fourth and the fifth columns represent the
same thing as the second and the first one but on the C.Geourjon’s database.
The C.Geourjon’s database is used to make our validation on other sequences.
These two databases have no common examples. The first rule h3hh3h1-close
obtained by Progol meens that we can find a pattern containing four hydropho-
bic amino-acids near cystines in 137 of our proteins: the pattern begins with a
hydrophobic not aliphatic and not aromatic amino-acid, following by a hydropho-
bic, following by a hydrophobic not aliphatic and not aromatic and following by
an aliphatic. This is a hydrophobic model because it contains only hydrophobic
amino-acids and it is close from the cystine. It covers the same percentage of the
two databases (19%). Most of the rules describe hydrophobic contexts and often
include small amino-acids. small seems to be a favorable property for disulfide
bonds because the protein becomes then more flexible. We can see that with
only 17 rules, more than 90% of the databases are covered, which seems a very
good result given the simplicity of the characterization.

5 Conclusion and Discussion

We have presented a new method for predicting the disulfide bonds in proteins.
Background knowledge gives the advantage of inserting information for the pre-
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diction. We have used two databases but with the C.Geourjon’s one we have no
negative examples, so we can not say if our rules cover false positive. It is difficult
to distinguish a negative example because disulfide bonds depend on the environ-
ment of the protein. That is why we have considered proteins becoming from the
same environment in the D.Tessier database. We are currently investigating the
possibility to introduce the secondary structure of proteins, which can be useful
to distinguish the models built by Progol. Patterns might be different according
to their localisation in the fold. Protein structures are the result of complex inter-
actions between secondary structure elements and the ability of ILP algorithms
to learn relations is a key feature. In conclusion we think that the inductive logic
programming can help to find explicit patterns around cystines. ILP has never
been used to solve the problem of disulfide bonds in proteins. Turcotte et al.[26]
have used ILP to find description of the major protein fold. They have shown
that the rules constructed by Progol can sometimes identify conserved functional
motifs. They concluded that relational background knowledge has demonstrable
advantages for learning in the construction of fold descriptions. Since we have
the same opinion we would like to put more information inside our background
knowledge so as to obtain more specific rules on disulfide bonds. Now, we try to
work on the second issue: is it possible to predict which pairs of cysteines are
connected with a disulfide bridge within a given protein? To solve this problem
we use the rules we have obtained to distinguish oxidized cysteines. Experiments
are still in progress and will be presented in a futur paper.
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Abstract. Aligning DNA and protein sequences has become a stan-
dard method in molecular biology. Often, it is desirable to include par-
tial prior knowledge and conditions in an alignment. The most common
and successful technique for efficient alignment algorithms is dynamic
programming (DP). However, a weakness of DP is that one cannot in-
clude additional constraints without specifically tailoring a new DP algo-
rithm. Here, we discuss a declarative approach that is based on constraint
techniques and show how it can be extended by formulating additional
knowledge as constraints. We take special care to obtain the efficiency
of DP for sequence alignment. This is achieved by careful modeling and
applying proper solving strategies.

1 Introduction

Modern molecular biology is not possible without tools for the comparison of
the macromolecules DNA, RNA, and proteins. It is most desirable to be able to
specify additional restrictions for such similarity search whenever prior knowl-
edge on the analyzed molecules is available. For example, consider the case of a
biologist, who knows that certain regions in her sequences share a common local
motif. Based on this knowledge, the rest of the sequences should be compared.
Then, we need to optimize similarity under the additional constraint that parts
of such regions should be matched to each other. Another striking example is
the enhancement of RNA or protein comparison by employing knowledge on the
structure of the macromolecules [10,3,1,5].

However in general, similarity searching tools on the web do not allow to take
such prior knowledge into account automatically. The reason for this deficiency is
of algorithmic nature. Only for certain special constraints, alignment algorithms
have been discussed. In particular, there are approaches that incorporate anchor
constraints [7] and precedence constraints [8]. We will later discuss how such
constraints fit into our newly introduced framework as simple cases. Aligning
sequences and (to some extent) sequences with additional structural information
is commonly and most successfully performed by dynamic programming (DP)
[9,11,3]. There is no straightforward and general way to extend a DP algorithm
in order to take additional knowledge into account.

?This work is partially supported by the EU Network of Excellence REWERSE.
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To overcome this, declarative formulations of the alignment problem have
been proposed. Due to their use of constraints, such approaches can be extended
to incorporate prior knowledge. For this aim, such knowledge is formulated as
constraints and added to the model for unconstrained alignment. One such previ-
ous approach [6] is based on integer linear programming (ILP). Since in ILP one
can only use boolean variables, the ILP model of [6] for aligning two sequences of
length n and m introduces O(nm) variables for modeling the alignment edges.
Due to the resulting complexity, one needs to introduce artificial restrictions
on the possible alignment edges for solving the problem in practice. Further-
more, the solving strategy for ILP does not achieve the efficiency of DP for the
unconstrained case. Another declarative approach [12] is based on constraint
programming. The approach introduces quadratically many variables and con-
straints and remodels the given DP algorithm. As a consequence, only a rather
restricted class of side constraints can be handled efficiently.

Here, we introduce a new constraint-based approach. The main challenge
that we face with our approach is to compete with the very good efficiency of
DP in the standard case and allow extension by introducing new constraints. We
achieve the desired efficiency and adaption to additional constraints by modeling
the alignment problem as a constraint optimization problem in the sense of [2,4]
and then applying a special solution strategy, which is known as cluster tree
elimination (CTE) [4].

2 A Constraint Model for Sequence Alignment

We develop a constraint model for sequence alignment of two sequences a =
a1 . . . an and b = b1 . . . bm that are both words of the alphabet Σ. To be more
precise, we define an alignment A of a and b as an ordered matching of po-
sitions in a and b, i.e. as a subset of {1, . . . , n} × {1, . . . ,m} such that for all
(i, j), (i′, j′) ∈ A:

1. i = i′ if and only if j = j′ and
2. i < i′ implies j < j′.

We call i and j matched by A if and only if (i, j) ∈ A.
The score of an alignment A, which we want to maximize, depends on the

similarity function on positions σ : {1, . . . , n} × {1, . . . ,m} → R and gap cost
γ ∈ R. It is defined as

score(A) = (n + m − 2|A|)γ +
∑

(i,j)∈A

σ(i, j). (1)

The classical DP algorithm for sequence alignment is specified via the re-
cursion equation Di j = max{Di−1 j−1 + σ(i, j),Di−1 j + γ,Di j−1 + γ} with
initialization D0 0 = 0, Di 0 = iγ, and D0 j = jγ for 1 ≤ i ≤ n and 1 ≤ j ≤ m
and solves the problem in O(nm) time.

Here, we model alignment as a constraint optimization problem in the frame-
work that is described in a more general form in [4]. There, one defines variables
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with finite domains and functions on these variables. In our special case, the
solution of the problem is a valuation of the variables that maximizes the sum of
the function values. Note that hard constraints c can be encoded in this frame-
work by functions that yield −∞ if the constraint is violated and 0 otherwise.
Tacitly, our arithmetic is extended canonically in order to handle sums and
maximizations involving infinity.

In our model, we represent alignments of a and b by finite domain variables
Xi for 1 ≤ i ≤ n with domains dom(Xi) = {0, . . . ,m}. Furthermore for technical
reasons, we introduce the fixed variables X0 = 0 and Xn+1 = m + 1 and extend
σ by defining σ(n + 1,m + 1) = 0. A given alignment A is uniquely encoded by
a valuation (X0 = x0, . . . ,Xn+1 = xn+1) of variables X0, . . . ,Xn+1 where 1.)
xi = j if (i, j) ∈ A and 2.) xi = xi−1, for every i that is not matched in A. Note
that i and j are matched if and only if xi = j and xi > xi−1. For example, the
valuation x = (0, 1, 2, 5, 6, 6, 6, 7, 8) of X0, . . . ,X8 corresponds to the alignment
{(1,1),(2,2),(3,5),(4,6),(7,7)}, which can be represented alternatively by

a1 a2 − − a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6 − − b7
.

The only hard constraints on the variables Xi are Xi−1 ≤ Xi for 1 ≤ i ≤ n+1.
They are modeled by functions

leqi : dom(Xi−1) × dom(Xi) → {−∞, 0}.

The scoring scheme is encoded via functions fi(Xi−1,Xi) for 1 ≤ i ≤ n + 1 that
are defined by

fi(j
′, j) =

{

σ(i, j) + (j − j′ − 1)γ if j′ < j

γ otherwise.

Note that we correctly model alignments and their scores. Firstly, a valua-
tion (X0 = x0, . . . ,Xn+1 = xn+1) represents an alignment A of a and b if and
only if

∑

1≤i≤n+1 fi(xi−1, xi) + leqi(xi−1, xi) is not −∞. Secondly in this case,
∑

1≤i≤n+1 fi(xi−1, xi) equals the score of A (see Eq. 1).

3 Efficient Solving by Cluster Tree Elimination

Here, we sketch CTE and show its application to the our model. We demonstrate
how direct application of CTE yields an O(nm2) algorithm. Then, by introducing
modifications to the standard CTE approach, we improve the complexity to
O(nm) time.

For applying CTE, we first need a cluster tree decomposition (CTD) [4]. In
such a decomposition, we distribute variables and functions to vertices (clusters)
of a tree, such that 1.) each function occurs in exactly one cluster, 2.) if a function
occurs in a cluster, then all variables of the function are assigned to the cluster
as well, and 3.) for each variable the set of clusters that contain this variable
induces a connected subtree.
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Fig. 1. CTD of pure se-
quence alignment.

Due to the definition, clusters that share vari-
ables are connected by edges. The shared variables
are called separator variables. Figure 1 shows a
cluster tree decomposition of our alignment model
where edges are labeled by separator variables. We
call the cluster consisting of Xi−1,Xi, fi, and leqi

the cluster i. Note that in this figure (and the fol-
lowing ones) we omit the functions leqi in our pre-
sentation.

CTE solves a constraint optimization problem
by repeatedly exchanging messages between the
clusters. The messages are functions that combine
the functions of the cluster and marginalize them
to the separator variables. Each message becomes
a new function of the receiving cluster. From cluster i to cluster i + 1, CTE
sends a function gi of the separator variable Xi. Beginning with cluster 1 it pro-
ceeds until cluster n + 1 receives its message gn. When sending a message from
cluster i, this cluster is already augmented by a function gi−1. Finally, it can
be shown that max1≤j≤m (gn(j) + fn+1(j,m + 1)), which is the marginalization
of the functions in cluster n + 1 to the empty set of variables, is the maximal
alignment score.

It remains to show how the messages gi are computed. Due to the CTE
algorithm, the message gi is defined for 0 ≤ j ≤ m as

gi(j) = max
0≤j′≤m

(gi−1(j
′) + fi(j

′, j) + leqi(j
′, j)) . (2)

Clearly, the standard approach takes O(m2) time for computing the function gi.
Since O(n) messages are sent until the final alignment score can be computed,
this results in an O(nm2) algorithm. Thereby, we have shown that the direct
application of CTE to our constraint model yields a polynomial algorithm for
sequence alignment.

Improving complexity. The complexity can be improved further if we employ the
internal structure of the functions gi−1, fi, and leqi. For this reason, we rewrite
Equation 2 by the semantics of leqi and expand the definition of fi.

gi(j) = max
0≤j′≤j

(

gi−1(j
′) +

{

σ(i, j) + (j − j′ − 1)γ if j′ < j

γ otherwise

)

.

Now, we can resolve the case distinction of fi and move the constant σ(i, j) out
of the maximization. Then,

gi(j) = max

{

σ(i, j) + max
0≤j′<j

(gi−1(j
′) + (j − j′ − 1)γ)

gi−1(j) + γ.
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A helper function gm(j) = max0≤j′<j (gi−1(j
′) + (j − j′ − 1)γ) can be defined

recursively and then computed in O(m) time by DP as

gm(0)=−∞, gm(1)=gi−1(0), and for j > 1 gm(j)=max

{

gm(j − 1) + γ

gi−1(j − 1).

In consequence, the total computation of gi is done in O(m). This results in an
O(nm) time algorithm for the computation of the alignment score.1

4 Extension of the Sequence Alignment Model

Recently discussed constrained alignment approaches handled constraints like
anchor constraints and precedence constraints. Such constraints can be encoded
in our model straightforwardly and are handled by restricting the domains of
variables, which even increases the efficiency of our algorithm. An anchor con-
straints, as discussed in [7], tells that position i in the first sequence can only be
aligned to position j in the second sequence and furthermore, positions strictly
left (resp. right) of i are aligned to positions strictly left (resp. right) of j. These

Fig. 2. CTD of an alignment with seg-
ment constraints.

conditions are expressed in our model
by the constraints

Xi−1 < j,Xi+1 > j, and
Xi = j ∨ Xi = Xi−1;

the latter implies Xi ≤ j. The con-
straints are directly propagated to the
domains of Xi and Xi−1 and do not
increase the complexity of our con-
straint problem. Via the less than con-
straints the new domain information
is further propagated to the domains
of all variables.

A precedence constraint, handled
in [8], tells that in the alignment po-
sition i of the first sequence is left
(resp. right) of position j of the second
sequence. In our model, correspond-
ing conditions are encoded as Xi ≥ j
(resp. Xi ≤ j). A further example for
a trivial extension of the model is a
condition like ”position k is aligned to
l or l′” (constraints: Xk ∈ {l, l′} and
Xk−1 < Xk).

In this section, we discuss two more challenging extensions by example.
Namely, the incorporation of prior knowledge on aligned segments and the ex-
tension to sequence structure alignment.

1O(m) space can be achieved by further modifications to CTE.
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Aligned Segments As example of constraining the alignment between segments
in a and b, we consider the constraint that at least x% of the positions {k, . . . , k′}
in a have to be matched with positions {l, . . . , l′} in b. For extending our model
by this constraint, we add variables Ak−1, . . . , Ak′ and for each k ≤ i ≤ k′ the
function ci(Ai−1, Ai,Xi−1,Xi) that encodes the hard constraint

Ai = Ai−1 +

{

1 if Xi−1 < Xi and l ≤ Xi ≤ l′

0 otherwise.

We fix Ak−1 = 0. Since the variables Ai count the proper matches in the prefix
segment {k,. . . ,i}, we can finally express the constraint by restricting the domains
of Ai to {max(0, d x

100 (k′ − k + 1)e − (k′ − i)), . . . , i − k + 1}.
Figure 2 shows the cut-out of the CTD that is affected by the extension

of the model. CTE works essentially as in the standard case. For k ≤ i ≤ k′,
CTE sends messages gi depending on the separator variables that each can be
computed in O(mk̄) time where k̄ = k′ − k + 1. Thus, the total complexity
is O(m(n − k̄) + mk̄2). Note that, as assumed in this result, one can transfer
the complexity improvement of the previous section to this case of constrained
alignment. It suffices to look at the message gi from the cluster that contains a
variable Ai (and thus contains the variables Xi, Xi−1, and Ai−1 by construction).
The message gi, which depends on values for Xi and Ai, is given (already using
the semantic of leqi and ci) as

gi(j, a) = max
0≤j′≤j

{

gi−1(j
′, a − 1) + fi(j

′, j) if j′ < j and l ≤ j ≤ l′

gi−1(j
′, a) + fi(j

′, j) otherwise.

One transforms further to

gi(j, a) = max

{

σ(i, j) + gm(j, a)

γ + gi−1(j)

where we define

gm(j, a) = max
0≤j′<j

((j − j′ − 1)γ + gi−1(j
′, a′))

where a′ = a if l ≤ j ≤ l′ and a′ = a − 1 otherwise. Finally, gm can be defined
recursively as in the previous section as

gm(0, a) = −∞, gm(1, a) = g(1, a′), and

for j > 1 gm(j, a) = max

{

gm(j − 1, a′′) + γ

gi−1(j − 1, a′′)

where a′ = a if l ≤ 1 ≤ l′ and a′ = a − 1 otherwise. Furthermore, a′′ = a if
l ≤ j ≤ l′ and a′′ = a − 1 otherwise.

We have demonstrated, that for this class of constraints the efficiency can be
improved in the same way as in the case of unconstrained alignment. Intuitively,
the additional constraints do not interfere with the nature of our score that
enables the recursive decomposition.
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Sequence Structure Alignment Here as additional input, we have two structures
Pa ⊂ {1, . . . , n} × {1, . . . , n} and Pb ⊂ {1, . . . ,m} × {1, . . . ,m} and a function
ω : {1, . . . , n} × {1, . . . , n} × {1, . . . ,m} × {1, . . . ,m} → R. A pair (il, ir) ∈ Pa

(resp. (jl, jr) ∈ Pb) expresses a dependency, e.g. base pairing in RNA, between
the positions il and ir (resp. jl and jr). The function ω yields a score for aligning
pairs of dependent positions.

The score of an alignment A is now defined in extension of Eq. 1 as

score(A) +
∑

(il,ir)∈Pa,(jl,jr)∈Pb,
(il,jl)∈A,(ir,jr)∈A

w(il, ir; jl, jr).

Our alignment model can be extended by adding for each (il, ir) ∈ Pa func-
tions hilir

(Xil−1,Xil
,Xir−1,Xir

) that are defined as

hilir
(j′l , jl, j

′
r, jr) =

{

ω(il, ir; jl, jr) if j′l < jl, j′r < jr, and (jl, jr) ∈ Pb

0 otherwise.

Figure 3 provides an example for Pa = {(kl, kr), (ll, lr)} and arbitrary Pb,
which demonstrates the general construction principle of such a CTD. Due to
the base pair (kl, kr) (and analogously for (ll, lr)), the decomposition contains a
node consisting of the variables Xkl

,Xkr
and their predecessors Xkl−1,Xkr−1,

since these variables depend on each other via the function hklkr
. This node is

parent of two sub-trees. In its left sub-tree, we handle the alignment for positions
between kl and kr and in the right sub-tree the alignment for the positions less
than kl. Due to the conditions for a CTD, the variable Xkl

has to be shared
with nodes of the left sub-tree, since it is constrained to variables in the leftmost
leave.

In this tree structure, CTE begins with the leave vertices and proceeds to
the root. From each cluster, it sends a message to its parent cluster. The final
alignment score is obtained from the root node.

5 Conclusion

We present the first declarative approach to sequence alignment that is equally
efficient as the commonly used method of dynamic programming. However, due
to the declarative nature of the presented algorithm, it is extensible by additional
constraints. This extensibility subsumes and goes beyond earlier constrained
alignment approaches. Especially, we have shown how certain prior knowledge
and structure information can be incorporated into the alignment model. By
applying cluster tree elimination to the resulting extended alignment problem, we
solve it efficiently. Finally, we have demonstrated for the alignment problem how
CTE could profit from intelligent reasoning on the constraint model. Thereby,
we hint at possible improvements of a current constraint solving strategy.
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Fig. 3. Example sequence structure alignment CTD (see text for details).
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Abstract. Motif discovery abstracts many problems encountered dur-
ing the analysis of biological sequence data, where the sequences can be
nucleotide or protein molecules and motifs represent short functionally
important patterns. In this work we have in mind a new computational
approach to the problem of looking for Transcription Factor Binding
Sites: the search for genomic motifs responsible for the binding of Tran-
scription Factors to Promoters and other regulative elements, the major
event underlying gene expression control. We focus our attention on the
problem of, given a set of strings, finding a substring common to the
strings in the input set, allowing a fixed layout for mismatches in our
output.

Introduction

The discovery/identification of short strings occurring approximately in a set
of longer strings/sequences is one of the major tasks in today’s computational
biology. In our particular case we refer to these short strings as motifs. In our
initial setting the notion of “approximate occurrence” means that motifs must
match a segment of (each) sequence with at most some specified number of
mismatches.

Motif discovery abstracts many problems encountered during the analysis
of biological sequence data, where the sequences can be nucleotide or protein
molecules and motifs represent short functionally important patterns. In this
work we have in mind a new computational approach to the problem of looking
for Transcription Factor Binding Sites (TFBS): the search for genomic motifs
responsible for the binding of Transcription Factors to Promoters and other
regulative elements, the major event underlying gene expression control.

More specifically, in this paper we focus our attention on the problem of,
given a set of strings, finding a substring common to (a significant portion of)
the strings in the input set, allowing a fixed layout for mismatches in our output.
The general strategy used to tackle the problem is based in the introduction of
a data structure encoding à la Karp-Rabin substrings of the strings in the input
set. Based on the observation that layout mismatches can be ordered (according
to a suitable notion of ordering on strings), the construction of our data struc-
ture can be naturally carried out exploiting a constraint programming scheme.
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An important byproduct of this approach—currently under investigation—is
the possibility of extending our method to the more general cases (usually in-
tractable) of the Common (Sub)String Problem.

We begin our presentation by recalling the local multiple alignment problem:
an approach leading, under specific assumptions and statistical hypothesis, to
a particular solution of our problem. In a more general setting, after finding a
set of similar—multiply aligned—substrings of the same length of the strings in
our input, we need to compute the consensus sequence: the “most representative
string”, according to some criteria, for the found set. This problem is, in general,
NP-hard, therefore some constraint are needed to cut the search space. Motivated
by the applications we have in mind and based on a biological background,
we reduce the consensus problem to the fixed-layout consensus problem. From
a technical point of view, we first show how a narrow biological relevant set
of substrings can be chosen. Then, we show how the corresponding consensus
sequence can be computed and, finally, we show how to enlarge the set towards
a consensus-problem-like solution.

1 Basics and Literature

For a string s over Σ, we introduce the following notation:

- |s| denotes the length of s
- s[i] is the i-th character of the string s
- s[i . . . i + l − 1] is the substring of ` characters starting from s[i]
- s £ t denote that s is a substring of t

The Hamming distance between two strings of the same length is the number
of symbols that disagree.

1.1 Local multiple alignment

Multiple sequence alignment is one of the well studied problems in computational
molecular biology and has many applications. We focus our attention on multiple
local alignment of nucleotide sequences, useful for finding conserved motifs, like
TFBS, or greater regions putatively corresponding to entire promoters.

The local multiple alignment problem (also known as the general consensus
patterns problem) consists, given a set of m strings, in locating a substring at
fixed length ` from each string in the set, so that the score determined from the
set of substrings is maximized/minimized.

Scoring Schemes. Let #j(a) = |{ti : ti[j] = a}|, that is the number of the

appearances of letter a in the j-th column of ti’s. Let fj(a) =
#j(a)

n
, the frequency

of letter a in the j-th column of ti’s. Let p(a) denote the frequency of letter a in
the whole space (e.g. the genome), that is the background probability of a.
We can now define the following scoring schemes:
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#LOG#-score: score(t1, . . . , tn) =
∑l

j=1

∑

a∈Σ #j(a) · log #j(a);

IC-score: score(t1, . . . , tn) = 1
l

∑l

j=1

∑

a∈Σ fj(a) · log
fj(a)
p(a) ;

SP-score (sum-of-pairs): score(t1, . . . , tn) =
∑l

j=1

∑

i<i′ dist(ti[j], ti′ [j]),
where dist(x, y) is the distance between letter x and letter y.
If we consider an arbitrary distance satisfying the triangle inequality, the

problem is defined as the minimization problem instead of the maximization
problem. Although scoring schemes are closely related, there is a large gap on
the approximability.

By using the scoring scheme model hypothesis, we can formulate the problem
as follows: given a set F = {s1, s2, . . . , sm} of strings, and an integer `, find a
substring ti of length ` from each si, maximizing the score of (t1, . . . , tn), where
(t1, . . . , tn) is a local multiple alignment, a local alignment, or simply an align-
ment. Multiple local alignment is NP-hard under each of these scoring schemes.
In addition, multiple local alignment is APX-hard under the average informa-
tion content scoring [2,3]: it implies that unless P=NP, there is no polynomial
time algorithm whose worst case approximation error can be arbitrarily small
(precisely, a polynomial time approximation scheme).

Stormo and Hartzell proposed a score based on the average information con-
tent (IC-score) and developed a (heuristic) iterative algorithm for finding an
optimal score (widely used along with variants) [13,14]. By using the average
information content scoring scheme, Lawrence and Reilly developed an EM (ex-
pectation maximization) algorithm [8], while Lawrence et al. developed a Gibbs
sampling algorithm [7]. However, these algorithms do not guaranteed to find an
optimal alignment (i.e. an alignment with the maximum score). Any theoretical
guarantee is not given for the scores of the computed alignments.

The result in [1] suggests that the scoring schemes greatly influence the ap-
proximability and thus, should be considered as an important factor in approx-
imation algorithms. In spite of the APX-hardness of local multiple alignment
under IC-scoring, the results of computational experiments show that the Gibbs
sampling algorithm is the best from a practical viewpoint.

1.2 Finding a common substring

A popular technique for finding motifs is to enumeratively test all strings over the
sequence alphabet having length equal to the desired motif length. Enumerative
algorithms produce all possible motifs for a set of sequences. This allows to
evaluate, according to other criteria, the discovered motifs that possess a certain
combinatorial property. For this reason, enumerative algorithms can provide
input to other algorithms that filter motifs based on other properties.

We assume to use the Hamming distance. Formally, we define the motif
enumeration problem as follows:

Definition 1. The input of the motif enumeration problem is a set of strings,
F = {s1, . . . , sm}, over an alphabet Σ such that |si| ≤ n, 1 ≤ i ≤ m, and integers
` and d such that 0 ≤ d < ` ≤ n. The solution is a set of motifs MF ⊆ Σl such
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that for each motif C ∈ MF and each si ∈ F , there exists a length ` substring
of si, that is Hamming distance ≤ d from C.

There are two major computational challenges to enumerating motifs. The
first challenge is that the problem of deciding if MF = ∅ is NP-hard; practical
solutions are thus non-trivial. The second is that we are concerned with more
than simply the decision, so we may have to produce output of exponential size.

This most naive form of search introduces a factor of Ω(|Σ|`) into the time
complexity. The benefit of this type of enumeration is that it requires space
bounded by a linear function of the size of the input. New ground was broken
when Sagot [10] introduced a different approach that enumerates only those
strings that are potential motifs, letting information from the sequences guide the
enumeration. This more intelligent search remains within the (`, d)-neighborhood
of each sequence.

Definition 2 (neighborhood). For a string s ∈ Σn, with n ≥ `, the (`, d)-
neighborhood of s is the set

{t|t ∈ Σ` ∧ dH(s′, t) ≤ d for some substring s′ of s with |s′| = `}.

For any string s, we use N`,d(s) to denote the (`, d)-neighborhood of s. For a
family F of strings, the (`, d)-neighborhood of F is the set

{t|t ∈ Σ` ∧ ∀s ∈ F , t ∈ N`,d(s)} =
⋃

s∈F

N`,d(s),

and is denoted N`,d(F).

We also define the value N =
∑d

i=0

(

`
i

)

(|Σ| − 1)i. The significance of N is that
for a string s′ with |s′| = `, N = |N`,d(s

′)|.
The method of Sagot has a time complexity of O(`m2nN), a space complexity

of O(`m2n). Furthermore, the algorithm in [10] is designed with a “quorum”
parameter, so that a motif is only required to be common to some q ≤ m of the
sequences.

1.3 Generating a consensus

Finding a consensus sequence representing the best approximation of all the sim-
ilar results that have been obtained is crucial, in order to recover useful informa-
tion from the examined (biological) sequences. The problem can be formulated
as follows: find a substring or a small similar subsequence that is common to
many of the strings in the set. We consider the Hamming distance dH to define
the concept of “similarity” among substrings.

The problems we are interested in include the closest string (CStrP) and the
closest substring (CSStrP), with or without a threshold.

Given a set F of m strings, F = {s1, . . . , sm}, each of length |si| = n,
CStrP: find a string p that minimize the maximum distance (denote by d) be-
tween p and s, for all s ∈ F .
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Formally, d = maxs∈F dH(p, s) = minp′∈Σn maxs∈F dH(p′, s). We have to find
the minimum d such that Nn,d(F) 6= ∅.
CStrP(d): given an integer d, find a string p such that its maximum distance
from a string s of F is d or less. That is to say, if Nn,d(F) 6= ∅, we need to find
p ∈ Nn,d(F).
CSStrP(`): given an integer `, find a string p of length `, and m substrings
s′i B si of length `, such that the maximum distance between p and s′i is the
minimum among all possible substrings of F . Formally, d = maxs′

i
dH(p, s′i) =

minp′∈Σl,s′

i
Bsi,|s′

i
|=` maxs′

i
dH(p′, s′i).

CSStrP(`,d): given two integers ` and d, find a string p of length `, and m
substrings s′i B si, such that the minimum distance between p and s′i is d or less.

Initially, guided by the needs of genomic research, statistical approaches were
used to give solutions for the CStrP. The problem had been previously studied
because of its connection with the area of coding theory, where it was proved
to be NP-hard [5]. The CSStrP models the more general situation where the
strings that must be compared do not have the same length, and one wants
to find just parts of the string that are similar. For example, the usefulness of
this approach in genomic research can be seen when performing cross-species
sequences comparisons, where the dataset is made of orthologous regions that
can share some common features while having different length due to differences
in the genomic structure. The CSStrP, being a generalization of the CStrP, can
be easily shown to be NP-hard. In terms of parameterized complexity, the main
results for the CSStrP is that it cannot be solved in polynomial time, even when
the distance parameter is fixed [4].

2 Our proposal

We begin this section recalling a classic in string manipulation which turns out
to be the basic ingredient of our approach: the Karp-Rabin encoding. The idea
is presented by a short review of the original algorithm and is completed with
the relative complexity results.

2.1 Karp - Rabin algorithm

The algorithm proposed by Karp and Rabin in [6], solves the pattern discov-
ery problem on the exact string matching background. This algorithm assumes
that we can efficiently shift a vector of bits and that we can efficiently perform
arithmetical operations on integers. To take advantage of this assumptions, we
can see a string like an integer, mapping each character of Σ in a digit using a
function fm. For example, in the DNA context, Σ = {A,C,G, T} can be mapped
into Σ′ = {0, 1, 2, 3}.
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Definition 3. For a text string T , let Tr denote the `−length substring of T
starting at character r. We can now define the following function:

H(T1) =

i=
∑̀

i=1

|Σ|`−i · fm(T [i]) (1)

H(Tr) = |Σ| · (H(Tr−1) − |Σ|`−1 · fm(T [r − 1]) + fm(T [r + ` − 1]) (2)

The following theorem holds.

Theorem 1. There is an occurrence of a pattern P starting at position r of T
if and only if H(P ) = H(Tr).

In [6], Karp and Rabin introduced a method called the randomized fingerprint
method, that preserves the spirit of the above numerical approach, but allows
to deal with larger numbers in an extremely efficient way. It is a randomized
method because introduces a probability of error, but the probability that a
false match occurs can be bounded as stated in the following theorem.

Theorem 2. The Monte Carlo algorithm for pattern matching requires O(n +
m) time and has a probability of error O(1/n).

In this work, we use only the first part of the algorithm idea, because, working
with approximate string matching, it is not simple to introduce an efficiently
hashing funcion.

2.2 Formalization of the problem

Input: F , `, d and q, where F = {s1, . . . , sm} is the set of strings (not necessarily
of the same length), d is the number of errors allowed in comparisons and q is
a parameter denoting the minimum size of the set of F-elements containing
a common substring of length ` with d errors. Without loss of generality, we
consider input strings of the same length n.

Definition 4. A solution for the (l, d, q)-consensus problem over T is S if and
only if

– there exists a pattern p ( consensus), |p| = l, s.t. S ⊆ {s ∈ Σl|dH(s, p) ≤ d}
– for all s ∈ S, there exists si ∈ F such that s £ si

– |{i|∃s ∈ S, s £ si}| ≥ q

When trying to apply this approach to biological problems like the identifica-
tion of known and putative TFBS, some considerations must be done in order to
simplify the analysis. First of all, if a blind search has to be done and no previous
knowledge is going to be used, it is useful to consider that, in general, Transcrip-
tion Factors that regulate the expression of a group of genes involved in a given
biological process tend to bind these genes’ promoters in the same region, so the
dimension of the sequences taken into account can be greatly reduced [12]. The
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second useful assumption is that, given a motif (TFBS), only some of its char-
acters (nucleotides) are important for the binding of the Transcription Factor;
this feature, that is considered also by statistical approaches when creating the
weighted matrices, allows to co-cluster different results, apparently correspond-
ing to different motifs, simplifying and reducing the number of consensus TFBS
generated by the algorithm. Thus, we propose a approximated algorithm based
on the concept of localized nucleotide mutation: a protein can “accept” one or
more mutations in a binding site, but always in the same positions.

Definition 5. A solution for the fixed-layout (`, d, q)-consensus problem over
F is Sfl if and only if

– Sfl ⊆ Σ`

– for all s′ ∈ Sfl, there exists si ∈ F such that s′ £ si

– |{i|∃s′ ∈ Sfl, s
′ £ si}| ≥ q

– there exists a set of indexes fl = {i1, . . . , id}, 1 ≤ i1 < · · · < id ≤ `, such
that for all s′i and s′j in Sfl, s′i[k] 6= s′j [k] ⇒ k ∈ fl.

Output: all the positions of the common subsequences of length ` with d
errors founded in at least q sequences, with the addition of the constraint that
the errors, if occur, are in the same position (called layout).

The fixed-layout problem is a reduction of the consensus problem, with the
aim to find some useful biological information.

2.3 ScanPro

Due to the limited amount of information available about Transcription Factors-
DNA interactions it is quite difficult to formalize specifications allowing to filter
good from false positives results.

This algorithm aims to solve the fixed-layout (`, d, q)-consensus problem,
and then extend the results to obtain an approximate solution for the (`, d, q)-
consensus problem solution. The difference with solving immediately the former
problem is in the generation of the consensus sequence and in the final com-
plexity. Furthermore, thanks to the fixed-layout approach, it becomes possible
to propose algorithms that exploit new biological constraints on protein/DNA
3D binding [11].

The most interesting goal is to find the best constraints that allow to compute
the consensus sequence for a set of strings. It is well known that statistical
approaches and hidden Markov models are based on a priori knowledge, that
can help to find common subsequences with a certain structure (or biological
function), but become unproductive when looking for new patterns.

Encoding. Given d, the maximum number of errors allowed in a string of `
characters, a generic error layout fl = {i1, . . . , id}, such that 1 ≤ i1 < · · · < id ≤
`, is the set of the d positions where an error may occur during a comparison
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between strings. Without loss of generality, we suppose that i1 is strictly greater
than 1, that is that an error can not be in first position; in this way there are
tfl =

(

`−1
d

)

error layouts called FL = {fl1, . . . , f ltfl}.
We can divide error layouts into two classes: basic and shifted. The basic

layouts, bfl, are characterized by having id = ` and are
(

`−2
d−1

)

overall. Shifted
layouts relating to an established basic layout bflx are denoted by sflx,j and
look like {i1 − j, . . . , id − j}, with i1 − j ≥ 2.

Fixed an error layout, the function fl code : (Σ` × FL → N) gives the
encoding of a string of `− d characters. For each string s ∈ F , with |s| = n, and
each basic layout bflx = {i1, . . . , id}, we have to encode all possible n − ` + 1
substrigs of length ` in s, thus perform (n − ` + 1)(2` − 1) operations.

Considering a shifted layout sflx,j = {i1−j, . . . , id−j}, with j = 1, . . . , i1−2,
we can obtain the encoding of the substring s[i, . . . , i+`−1] for the given layout
by taking the encoding of s[i − 1, . . . , i + ` − 2] for the error layout sflx,j−1,
performing a left shift and adding the value relative to s[i + `− 1], making only
2(n − ` + 1) operations.

Since |Σ| = 4, we can map the alphabet on Z4 using only 2 bits for each
character. Hence, an `-characters-long string is mapped into a 2` bits integer
number, so any shift involves only 2 bits.

The function fl code returns a value used as index of an array: in each
position c of this array there is a pointer to a matrix Mc of dimension tfl×(m+1),
with m = |F|, whose elements are lists of positions from column 1 to m and in
column m + 1 there is the “rank”, that is the number of different strings s ∈ F
in which we can find that specific motif. Mk(i, j) 6= NULL if in sj there exists
a substring w such that |w| = ` and fl code(w, fli) = k. A rank is incremented
when an element is put in a empty list in the relative row.

At the end, if this value is greater than the quorum, the motif is a solution for
the fixed-layout problem and we have all positions of the occurrences. Using this
occurrences, we are able to generate a consensus ck, according to the majority
string model. Now, thanks to the previous data structure, we have in constant
time all positions of the substrings s′, such that dH(ck, s′) ≤ d.

Definition 6. Given a set S of r strings, S = {s1, . . . , sr}, each of length |si| =
l, we indicate by N (a, j, S), a ∈ Σ, j ≤ l, the number of characters of type a in
the j-th position of strings si of S.

A majority string for S is a string w, where for each j ≤ l, w[j] is one
character with maximum frequency, i.e. N (w[j], j, S) = maxa∈Σ N (a, j, S).

To obtain a most biological informative consensus, during its creation we use
an extended alphabet Σ′ = {A,C,G, T,R, Y,N}, where R = A or G (purine),
Y = C or T (pyrimidine), and N is any character, in according to the IUPAC
alphabet.

2.4 Constraints

Let us consider the formalization of the CSStrP: let x1, . . . , x` be variables over
|Σ|, then x1 . . . xl is a string over the domain Σ` (enumeration of all motifs).

82



Let si,j be the character j of the string i, and let Bi,j be boolean variables,
with i = 1, . . . ,m and j = 1, . . . , n. For all x1 . . . xl ∈ Σ`, we introduce the
reified constraint (xk = si,j+k−1) ⇔ Bi,j+k−1, with 1 ≤ k ≤ `, 1 ≤ i ≤ m,
1 ≤ j ≤ n − l + 1, and impose that Bi,j + · · · + Bi,j+`−1 ≥ ` − d.

In the fixed-layout problem, we impose different constraints. Let B1, . . . , B`

be boolean variables that fix the layout, thus Bk ⇒ (xk = si,j+k−1), with 1 ≤
k ≤ `, 1 ≤ i ≤ m, 1 ≤ j ≤ n − l + 1.

An improvement under investigation, concern the layout. Instead of fix it at
the beginning, it would be use more efficient generate the best layout during the
computation.

2.5 Further work

Future improvements, under analysis, concern the following topics.

1. Different computations for the consensus sequence, according to other dis-
tances or allowing an external consensus.

2. Introduction of a hashing function to obtain a randomized version of our
algorithm.

3. Exploit the features of algorithm and data structure to change the number
of errors allowing the “entry” of new errors.

3 Conclusions

Predicting promoter elements or extracting their consensus sequence are im-
portant steps towards the global comprehension of the mechanisms undergoing
genes co-regulation. In order to achieve this goal, it is necessary to take into
consideration aspects like the correct combination and the precise spatial or-
ganization of the regulatory sites, like demonstrated in recent papers [9,15].
The order and relative distances between the binding sites, thus, can no longer
be considered negligible constraints, and whatever the method used to extract
a consensus sequence, the prediction of precise promoters structure cannot be
considered completed unless more biological knowledge is used during the pre-
diction. It is our belief that, when working on human genomic data, no existing
method for either promoter location prediction or promoter consensus extraction
is very trustworthy at doing its job. Particularly troublesome to all approaches,
whatever their aim, is the presence of too much noise, whether it comes from
stretches of repeated sequences with no biological function or from the presence
in the data set of more than one family of independent promoter motifs. The al-
gorithms for extracting conserved sets of single or combined words in a sequence
are growing increasingly more sophisticated and efficient, especially when us-
ing combinatorial approaches. Unfortunately, it is in the statistical evaluation
of the motifs found that problems seem to persist, especially when errors are
allowed and motifs may be composed of more than one element with adjacent
parts standing at particular distances from one another. Purely combinatorial
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approaches (also with a posteriori statistical evaluation of the quality of the
results), such as Scanpro, allow a much more controlled, and sometimes pre-
cisely defined, analysis of the data, but often require a deep understanding of
the algorithms as well as extended practice in its use.
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