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Abstract

This paper explores the use of Constraint Logic Programming (CLP) as a platform for experimenting with
planning problems in the presence of multiple interacting agents. The paper develops a novel constraint-
based action language, B

MAP, that enables the declarative description of large classes of multi-agent and
multi-valued domains. B

MAP supports several complex features, including combined effects of concurrent
and interacting actions, concurrency control, and delayed effects. The paper presents a mapping of BMAP

theories to CLP and it demonstrates the effectiveness of an implementation in SICStus Prolog on several
benchmark problems. The effort is an evolution of previous research on using CLP for single-agent domains,
demonstrating the flexibility of CLP technology to handle the more complex issues of multi-agency and
concurrency.

1 Introduction

Representing and programming intelligent and cooperating agents that are able to acquire, represent, and reason
with knowledge is a challenging problem in Artificial Intelligence. In the context of single-agent domains, an
extensive literature exists, presenting different languages for the description of planning domains (see, e.g.,
[18, 17, 3, 15]).

It is well-known that logic programming languages offer many properties that make them very suitable as
knowledge representation languages, especially to encode features like defaults and non-monotonic reasoning.
Indeed, logic programming has been extensively used to encode domain specification languages and to imple-
ment reasoning tasks associated to planning. In particular, Answer Set Programming (ASP) [2] has been one
of the paradigms of choice—where distinct answer sets represent different trajectories leading to the desired
goal.

Recently, an alternative line of research has started looking at Constraint Programming and Constraint
Logic Programming over Finite Domains as another viable paradigm for reasoning about actions and change
(e.g., [26, 27, 34, 14]). In particular, [14] made a strong case for the use of constraint logic programming,
demonstrating in particular the flexibility of constraints in modeling several extensions of action languages,
necessary to address real-world planning domains.

The purpose of this paper is to build on the foundations of the work in [14], which dealt with single-agent
domains, and address the problem of representing and reasoning in domains that include multiple, interacting
agents. Each agent can have different capabilities and can perform different types of actions; the actions of the
agents can also be cooperative—i.e., their cumulative effects are required to apply a change to the world—or
conflicting—i.e., some actions may exclude other actions from being executed. Each agent maintains its own
view of the world, but groups of agents may share knowledge of certain features of the world (in the form of
shared fluents).

The starting point of our proposal is represented by the design of a novel action language for encoding
multi-agent planning domains. The action language, named BMAP (i.e., B for Multi-Agent Planning) builds on
the single-agent language B of [17, 14], where constraints are employed to describe properties of the world—e.g.,
properties the state of the world should satisfy after the execution of an action. BMAP adopts the perspective,
shared by many other researchers (e.g., [6, 24, 29]), of viewing a multi-agent system from a centralized per-
spective, where a centralized description defines the modifications to the world derived from the agents’ action
executions (even though the individual agents may not be aware of that). This is different from the distributed
perspective, where there is no centralized knowledge of how actions performed by different agents may interact
and lead to changes of the state of the world.

In this work, we demonstrate how BMAP can be correctly mapped to a constraint satisfaction problem, and
how constraint logic programming (over finite domains) can be employed to support the process of computing

∗An extended abstract of this work, entitled Representing Multi-Agent Planning in CLP, has appeared in [13].
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plans, in a centralized fashion. In particular, we will focus on modeling and solving planning problems where
a maximum length N of the plan is fixed a priori.

The contributions of this work can be summarized as follows: we present a novel high level action language
for the representation of multi-agent domains with centralized knowledge and with the capabilities for cooper-
ative and interacting actions. The action language supports the use of static causal laws, combined with the
use of constrains to capture complex relations among fluents, to describe the interactions between agents. The
paper also illustrates a novel mapping of the proposed action language to constraint problems, enabling the
use of constraint logic programming technology for reasoning about multi-agent domain specifications—e.g.,
for planning.

The paper is organized as follows. After briefly recalling the more closely related literature (Sect. 2),
in Sect. 3 we illustrate the syntax of the action description language BMAP, while in Sect. 18 we provide its
semantics. The guidelines of the constraint-based implementation and some experimental results are reported
in Sect. 19. Finally, some conclusions and directions for future works are presented in Sect. 20.

2 Related Work

The use of logic programming for reasoning in multi-agent domains is not new; various authors have explored
the use of other flavors of logic programming, such as normal logic programs and abductive logic programs, to
address cooperation between agents (e.g., [23, 28, 16, 1, 11]). Action languages for multi-agent domains and
with complex forms of agent interactions have been extensively explored, e.g., the work of Chesani et al. [8]
based on reactive event calculus and the works of Chopra et al. [10] and Desai et al. [12], providing extensions
of the C+ action language which includes forms of reasoning about commitments.

Some aspects of concurrency have been formalized and addressed also in the context of existing action
languages (e.g., C, C+, CARD [17, 3, 19, 9]) and in the area of multi-agent planning (e.g., [7, 6]).

A recent effort, along similar lines as ours, for modeling an action language for multi-agent systems, has been
proposed by Son and Sakama [32], relying on the use of answer set programming (with consistency restoring
rules) to address forms of synchronous communication among agents. The approach adopted in [32] is similar
in spirit—it also proposes a high level action language which allows the description of multiple agents, by
describing their individual capabilities. The language is quite different from BMAP; in particular

◦ The language of [32] supports only Boolean fluents and it does not provide the declarative support of a
constraint-based language (e.g., to express complex dependencies among fluents);

◦ The interactions among agents in [32] are limited to explicit exchange of fluents (through actions of type
request and provide); in particular, it is not obvious how to encode cooperative actions—where a shared
effect is obtained only when different agents participate in the execution of an action.

◦ The language of [32] takes the perspective of agents operating mostly independently to achieve separate
goals, while BMAP allows the modeling of agents cooperating to achieve a shared goal.

◦ The underlying technology used to plan in the action language is radically different—while BMAP is mapped
to constraint solving and implemented using constraint logic programming, the language of [32] is mapped
to ASP with consistency-restoring rules.

The language investigated in this work is a variant of the language B originally introduced in [17], as
presented in [31]. Apart from minor syntactical differences, any action description D from the language of [31]
can be expressed in our language by simply defining a unique executing agent a and adding an enabling
executability law

action x executable by a

for each action x in D and considering propositional fluents as Boolean functions.
Our language has the capability of handling multi-valued fluents; several other languages have been proposed

that address the use of numerical fluents, such as ADC [4] and C+ [19]. Both are designed to be languages for
the description of single-agent domains.

The use of constraint programming and constraint logic programming to support reasoning about actions
and change has been explored by several authors. Lopez and Bacchus [26] offer an encoding of STRIPS-based
planning domain specifications (single agents, without static causal laws, and with deterministic domains) as
constraint satisfaction problems. Vidal and Geffner [35] illustrate the use of the CLAIRE constraint program-
ming language to compute optimal plans in the context of planning in presence of actions with duration. Barták
and Toropila [5] analyze different encodings of sequential planning as CSP.

A different use of constraint logic programming in reasoning about actions and change has been proposed
by Thielscher [34]. The author presents an encoding of the fluent calculus axioms using Constraint Handling
Rules (CHRs). The encoding uses lists to represent states, and it employs CHRs to explicitly implement the
operations on lists required to operate on states—e.g., truth or falsity of a fluent, validation of disjunctions
of fluents. The ability to code open lists enables reasoning with incomplete knowledge. Experimental results
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(reported in [33]) denote a good performance of Thielscher’s encoding (known as Flux) with respect to GOLOG.
The framework is suitable for dealing with incomplete knowledge and sensing actions and has the potential to
handle concurrency. Differently from our framework it does not explicitly provide a multi-agent language and
it does not bring the expressiveness of constraint programming to the level of the action specification language.
The use of constraints in the two approaches is radically different—Thielscher’s work develops new constraint
solvers to implement reasoning about states, while we use existing solvers as black boxes.

Logic programming, and more specifically Prolog, has also been used to implement the first prototype of
GOLOG (as discussed in [25]). GOLOG is a programming language for describing agents and their capabilities
of changing the state of the world. The language builds on the foundations of situation calculus, and it provides
high level constructs for the definition of complex actions, including concurrent actions. Prolog is employed to
create an interpreter, which enables, for example, to answer projection queries (i.e., determine the properties
that hold in a situation after the execution of a sequence of actions). The goals of GOLOG and the use of
logic programming in GOLOG are radically different from the focus of our work. In Section 19 we will briefly
discuss on the relative performances of GOLOG and Flux also compared to our system.

To the best of our knowledge, the use of CLP technology in the area of modeling multi-agent domains
is novel. CLP has been used to implement the centralized store of distributed programming platforms (e.g.,
OCP [20]).

3 Syntax of the Language BMAP

In this section, we introduce the syntax of the action description language BMAP that captures (through con-
straints) the capabilities of a collection of agents that can perform interacting actions.

The signature of BMAP consists of:

◦ a set G of agent names, used to identify the agents present in the domain;

◦ a set F of fluent names;

◦ a set A of action names; and

◦ a set V of values for the fluents in F .

We assume the use of multi-valued fluents and we assume V = Z. In general, we will use a, b for agent names,
f, g for fluent names, and x, y for action names. In the concrete syntax any ground term can be used as name.

3.1 BMAP Axioms

A theory in BMAP is composed of a collection of axioms. The axioms describe the different agents, their possible
states, and their capabilities to change the world.

3.1.1 Agents and Fluents

The agents present in the system are identified through agent declarations of the following form:

agent a (1)

where a ∈ G. As a shorthand we admit laws of the form agent a1, . . . , an, for {a1, . . . , an} ⊆ G.

The fluents are described by axioms of the form:

fluent f1, . . . , fh valued in dom (2)

with fi ∈ F , h ≥ 1, and dom ⊂ V is a set of values. (2) determines a subset dom of V which represents the
admissible values for each fi; dom might explicitly list these values, by taking the form {v1, . . . , vk}, or specify
an interval [v1, v2].

The knowledge agents have about the world is described by the set of fluents they can access:

agents a1, a2, . . . , an know fluents f1, f2, . . . , fh (3)

where n ≥ 1, ai ∈ G, h ≥ 1, and fj ∈ F .
For each agent a and fluent f we introduce the Boolean expression known(a, f), called Fluent Flag (FF), to

denote the fact that the agent a knows the fluent f . Currently this flag is statically determined in each planning
domain specification—in the future, we plan to allow the set of fluents known to an agent a to dynamically
change during the computation, as an effect of dynamic or static causal laws (see Section 20). With a slight
abuse of notation, we will use FFs both as Boolean functions (that can assume value 0 or 1) and as atomic
fluent predicates.
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Remark 4 We assume the existence of a unique collection of fluents and, by means of law (3), we can formalize
which set of fluents is accessible to each agent. Alternatively, one might assume that the different agents do not
immediately share fluents. Thus, for each a, b ∈ G, a 6= b, we have two disjoint collections of accessible fluents:
Fa ∩ Fb = ∅. An equivalence relation ≡F on the collection F =

⋃

a∈G Fa can be introduced to identify fluents
pertaining to different agents that encode the same properties. Intuitively, if Fa ∋ f ≡F f ′ ∈ Fb, then the two
fluents names f and f ′ are aliases and represent knowledge that is in common between agents a and b. This
perspective can be further expanded to provide translation among fluent formulae in the languages of different
agents (see, e.g., [30]).

The centralized perspective of planning adopted in our proposal ensures that agents update fluent values in a
consistent manner—i.e., distinct agents are not allowed to update a specific fluent with distinct values at the
same time.
Fluents (and flags) can be used in Fluent Expressions (FE), which are inductively defined as follows:

BaseTERM ::= n | f | FF
FE ::= BaseTERMt | BaseTERM@r | FE1 ⊕ FE2 | − (FE) | abs(FE) | rei(C)

(4)

where n ∈ V , t ∈ Z, ⊕ ∈ {+,−, ∗, /, mod}, f ∈ F , and r ∈ N.
The value of a fluent expressions depends on the “history” of the evolution of the world. Given an integer

number t, an expression of the form f t is an annotated fluent expression. Intuitively, for t ≥ 0 (t < 0), the
expression refers to the value f will have t steps in the future (had −t steps in the past). Hence, annotated
expressions refer to points in time, relative to the current state. The ability to create formulae that refer to
different time points along the evolution of the world enables the encoding of non-Markovian processes. f and
f0 will be used with the same meaning. An expression of the form f@r denotes the value f has at the rth step
in the evolution of the world (i.e., it refers to an absolutely specified point in time). The last alternative (reified
expression) requires the notion of fluent constraint C (to be defined next, see (7)). The intuitive semantics is
that an expression rei(C) assumes a Boolean value (0 or 1) depending on the truth of C.

4.0.2 Actions Descriptions

Given Ag = {a1, a2, . . . , an} ⊆ G, for n ≥ 1, and x ∈ A, the axiom

action x [executable by a1, a2, . . . , an] [takes FE steps] (5)

declares that x is meant to be executed collectively by the agents Ag. We use square brackets to delimit the
optional parts of the axioms. For example, if two agents a1, a2 are required to act together to slowly lift a
heavy object, we can express this as

action lift heavy object executable by a1, a2 takes 3 steps

The action is said to be individual if n = 1 and collective if n > 1. If the qualification executable by

is omitted, then x is an exogenous action. The last part of the declaration deals with actions with duration,
where FE is a fluent expression, to be evaluated in the state in which the action is started. In particular, the
execution of the action x by agents Ag will terminate after FE time steps and its effects (see dynamic causal
laws, below) will hold only after termination. Moreover, the agents Ag will be performing x during all these
FE time steps. Clearly, only positive values for FE should be expected and the semantics (see Sect. 18) will be
defined accordingly.

For the sake of simplicity, we will require each agent to perform at most one action at each moment of time.
As a result, each ai ∈ Ag will be unable to start another action during the subsequent FE time steps since the
start of x. If either the qualification takes FE steps is omitted or FE does not evaluate to a positive natural
number, then a default duration of one time step is assumed. An action that takes just one step is said to be
an instantaneous action, otherwise it is a durable action.

Let us observe that the same action name x can be used for actions executed by different sets of agents
Ag. It is convenient to use the pair 〈Ag, x〉 to refer to the action instance for a given set of agents. For each
action declaration of the form 〈Ag, x〉 we introduce the expression actocc(Ag, x), called an Action Flag (AF),
to denote the execution of the action x by the agents Ag. Action flags are integer valued expressions, evaluated
w.r.t. a state transition, that are non-zero during the execution of the action: from the state in which the
action begins, until the state preceding the one in which the action terminates. During this interval, the value
of the flag corresponds to the index of the state in which the action terminates.

Annotated action flags (AAF) allow one to express constraints on the time point in which an “instantaneous”
action occurs:

AAF ::= AF | actocc(Ag, x)t | actocc(Ag, x)@r (6)
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Assume that an action definition of the form (5) declares that x can be executed by agents Ag and such
execution takes FE time steps. In this case, if the action x is executed by agents Ag starting at time t1, then
actocc(Ag, x)t > 0 in all the time steps r ≥ t1 such that r+ t < t1+FE. The second type of annotated action
flag is treated similarly, except that the references are absolute instead of relative. We say that the action flag
refers to the past if t ≤ 0. The action flag refers to the future if t > 0. An action flag refers to the present if it
has the form actocc(Ag, x)0.

Action-fluent expressions (AFE) extend the structure of fluent expressions by allowing propositions related
to action occurrences (where t ∈ Z, r ∈ N, and ⊕ ∈ {+,−, ∗, /, mod}):

AFE ::= BaseTERMt | BaseTERM@r | AAF | AFE1 ⊕ AFE2 | − (AFE) | abs(AFE) | rei(C).

A Primitive Action Fluent Constraints (PAFC) is either a flag or a formula AFE1 op AFE2, where AFE1 and
AFE2 are action-fluent expressions, and op ∈ {=, 6=,≥,≤, >,<} is a relational operator. An action-fluent
constraint (AFC) is a propositional combination of primitive action-fluent constraints:

PAFC ::= AFE1 op AFE2 | FF | AAF
AFC ::= PAFC | ¬AFC | AFC1 ∧ AFC2 | AFC1 ∨ AFC2 | AFC1 → AFC2

Let us note that AAF are used either as a multi-valued term and as a primitive constraint. Intuitively, as a
constraint, an AAF is false if and only if its value is 0. We will refer to those particular (primitive) action-fluent
constraints that do not involve any action flag, simply as (primitive) fluent constraints. true and false can
be used as shorthands for true constraints (e.g., 0 = 0) and unsatisfiable constraints (e.g., 0 6= 0).

Remark 5 (Language Extensions) We admit some syntactic sugar for these annotated action flags. In
particular:

• actocc(Ag, x)[t1,t2] as a syntactic sugar for actocc(Ag, x)t1 = · · · = actocc(Ag, x)t2−1 > 0∧actocc(Ag, x)t2 6=
actocc(Ag, x)t2−1;

• actocc(Ag, x)[t1,t2[ as a syntactic sugar for actocc(Ag, x)t1 = · · · = actocc(Ag, x)t2−1 > 0.

We have already identified the truth values of Boolean expressions with integer numbers (i.e., 0 and 1). We
can easily generalize such a notion by admitting expressions of the form: count{C1, . . . , Ck} as a shorthand for
rei(C1)+ · · ·+rei(Ck). This expression returns the number of constraints, among C1, . . . , Ck, that are satisfied.

We also admit a limited form of quantification for building more complex constraints. A (generic) con-
straint (C) is defined as follows:

C ::= AFC | always C before Time | sometime C before Time |
| always C after Time | sometime C after Time |
| forall agent A [in Ag] C(A) |
| exists agent A [in Ag] C(A)

Time ::= n | now | now+n | now-n

(7)

where Time denotes either an integer number n (absolutely specified time point), or a relative time reference
with respect to the current point in time—denoted by of the form now+n (or now-n) for a natural num-
ber n. In case n = 0, now simply denotes the current point in time. For example, a constraint of the form
always C before now+1, is satisfied if the constraint C evaluates true in all points in time from the initial one
until the current one (inclusive). Similarly, sometime C after 5, evaluates true if C is true in at least one
point in time after the fifth one of the trajectory.

Observe that, in (7), C(A) denotes a scheme of constraint, i.e., an expression defined according to the
structure of a general constraint, the only difference being that a variable A occurs in place of an agent name.
Ag is a list of agent names. The “forall” (resp., “exists”) form is satisfied if, for all (resp., for some) agent
a in Ag, the constraint obtained from C(A) by instantiating A to a is satisfied. Quantification is restricted to
the elements listed in Ag, if specified, otherwise it ranges over all existing agent names (see Example 8 below).

We classify generic constraints involving annotated fluents, as well as fluent and action flags, as follows:
AFC is a past constraint if it does not involve annotated fluents or flags referring to the future or to absolute
points in time; it is a future constraint if it does involve annotated fluents or flags referring to the future but
it does not refer to absolute points in time; it is an absolute constraint if it involves annotated fluents or flags
referring to absolute points in time. A timeless constraint is a constraint not involving any time reference (this
actually means that all annotated fluents are of the form f0, and similarly for flags).
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A constraint C of the form always/sometime C1 beforeT is classified depending on T . Namely, if T is a
natural number then it is an absolute constraint; if T = now-n or T = now, then C is a past constraint if so is C1;
if T = now+n (for n > 0), then C is a future constraint. Constraints of the forms always/sometime C1 afterT
are always classified as future constraints. A constraint of the “forall” or “exists” forms is classified as it is
the constraint C(A).

5.0.3 Executability Conditions

An axiom of the form:
executable action x by a1, a2, . . . , am if C (8)

where m ≥ 0, Ag = {a1, a2, . . . , am} ⊆ G, x ∈ A, and C is a past constraint, states that C has to be entailed by
the current state for x to be executable by the agents in Ag.

For simplicity, we assume that at least one executability axiom is present for each pair (Ag, x) such that
an axiom of the form (5) is defined. If there are multiple executability axioms for the same (Ag, x), then the
conditions are considered in disjunction.

Observe that C is assumed to be false in those cases where C involves a fluent that is unknown to all the
agents a1, . . . , am (see law (3)).

Remark 6 Let us observe that C describes a necessary but not sufficient condition for the executability of x.
For instance, if one imposes as effect of an action an unsatisfiable constraint (e.g., f = 1 ∧ f = 0) the action
will not lead to any outcome. This remark holds in most existing action description languages.

Example 7 Consider a situation where agent a can receive a message only if it is sent by agent b. Such an
executability condition of the receive (from an agent) action is expressible as

executable action receive from(b) by a if actocc({b}, send to(a)) > 0.

Example 8 Consider now the following axiom:

executable action shoot(turkey) by theHunter
if always

(

forall agentA actocc(A, shoot(turkey)) = 0
)

before now

The action shoot(turkey) is executable by agent theHunter only if at no previous points in time the property
actocc(a, shoot(turkey)) is greater than zero (true) for any agent a—i.e., no one has already shot the turkey.

Example 9 This simple example simulates a synchronization among two agents bob and jack : the former has
to wait for jack cooking a cake before eating it. These are the relevant laws of the action description:

action cookcake executable by jack takes 3 steps

action eatcake executable by bob
executable action eatcake by bob if

sometime (actocc({jack}, cookcake)[−3,0]) before now

Notice that the first axiom states that jack is able to cook a cake and this takes 3 time steps. The last axiom
asserts that bob can eat a cake provided that there was a period of time in the past (three time steps long) during
which jack was been making the cake. Observe that bob can eat the cake only after the termination of jack ’s
action cookcake.

9.0.4 Actions Effects

The effects of an action execution are modeled through axioms (dynamic causal law) of the form

Prec causes Eff (9)

where Prec is a past constraint of the form AF ∧ C and AF refers to present (cf., Sect. 4.0.2). Prec is called
the precondition constraint. Let us observe that we require that such a constraint refers directly to the truth
value of at least one action flag (AF) corresponding to an action that has started in the current state-transition.
Prec might refer to other action flags, as well—thus allowing the description of effects of distinct concurrent
actions that are interacting (compound actions). Eff is a future or timeless fluent constraint, called the effect
constraint.

The axiom asserts that if Prec is true with respect to the current state, then Eff must hold in the state
reached when all the actions referred in Prec (through action flags) have terminated.
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Example 10 Let us consider a domain with two agents, a and b, each capable of performing two actions,
push door and pull door . If we want to capture the fact that the heavy door can be opened only if both agents
apply the same action to it, we can use the dynamic causal laws

actocc({a}, push door ) ∧ actocc({b}, push door ) causes opendoor = 1
actocc({a}, pull door ) ∧ actocc({b}, pull door ) causes opendoor = 1

Hence, the door can be opened only by the combined activity of both agents.

Remark 11 Notice that collective action and compound action conceptually model different notions. Compare
for instance the collective action defined by

action fight executable by jenny ,mark
and the concurrent execution of the pair of actions in the previous example. A collective action is a single action
whose execution mandatorily requires the participation of all the agents specified in its definition. A compound
action consists, instead, of the concurrent execution of several actions that, however, might be executed also
independently, possibly with different effects. E.g., in Example 10 if agent a pushes the door and agent b does
not, then the door remains closed.

11.0.5 Durable Effects

The effect constraint Eff of a dynamic law might specify that some effects of the action must hold during a
specified time interval (same restrictions on Prec and Eff as in equation (9) apply). This kind of assertion has
the form:

Prec causes Eff LAST (10)

with LAST defined as follows:

LAST ::= forK steps | until C | forever

where C is an action-fluent constraint and K denotes a (positive) number of time steps.
The first case for LAST is a syntactic sugar (language extension) for Prec causes Eff ∧Eff 1 ∧ · · · ∧Eff K−1

where the constraints Eff i are obtained from Eff by adding i to the time annotation of all annotated fluents.
The second case states that the effect Eff must hold until C becomes true. The third, instead, states that

the effect must hold for the rest of the time and it is a syntactic sugar for Prec causes Eff until false.
Therefore, we will develop the semantics for the second case only.

Example 12 This simple law imposes constraints on effect duration:

start match causes stay in sofa = 1 for 45 steps

Notice that, the same effect could have been written as:
stay in sofa = 1 ∧ stay in sofa1 = 1 ∧ · · · ∧ stay in sofa44 = 1

by explicitly listing all the relative time references.

Example 13 Let us consider the following law:

count down causes time = time−1 − 1 for 10 steps

Its effect its to repeatedly decrement by one the value of the fluent time for the successive 10 instants.

13.0.6 Static Causal Laws and Other State Constraints

Static causal laws can be added using axioms of the form:

C2 caused if C1 (11)

where C1 is a past constraint and C2 is a past action-fluent constraint, stating that the constraint C1 → C2 must
be entailed in any state encountered.

The notion of static causal laws allows the encoding of several interesting properties. For example:

• The semantics of our action language will require static causal laws to be satisfied at each time step in a
trajectory; this makes it possible to use them to express trajectory constraints of the type “C is always
true”, simply encoded by

C caused if true.
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• The specification of dynamic causal laws allows us to describe effects derived from the concurrent execution
of actions. Similarly, we may encounter situations where certain actions cannot be executed concurrently
by different agents. For example, if a property ϕ should prevent agent a from executing action x at the
same time as agent b executes y, then this will be captured by a static causal law of the form

false caused if actocc({a}, x) ∧ actocc({b}, y) ∧ ϕ

Example 14 Two agents can walk through a revolving door only one at the time. This is captured by

false caused if
(

actocc({a}, walk through) ∧ actocc({b}, walk through)
)

Similarly, the fact that the action switch on cannot be repeated consecutively by agent a can be expressed as
follows, using count:

false caused if actocc({a}, switch on) ∧ actocc({a}, switch on)−1

Other accepted constraints take the forms:

holds C at T1

holds C from T1 to T2

holds C from T1 LAST

where, C is an action-fluent constraint and, as before, T1 and T2 are integer numbers (denoting absolutely
specified time points). The first axiom requires the constraint C to hold at the time specified by T1. It is
therefore a generalization of the initially axiom commonly used to describe the initial state of the world.
The other two axioms (where LAST is as defined earlier) generalize the first axiom.

Observe that assertions of these types can be used to guide the search of a plan by providing point-wise
information about the states occurring along the computed trajectory.

14.0.7 Costs

The cost of actions can be expressed in BMAP using assertions of the following forms:

• action cost(Ag, x, FE) specifies the cost of the execution of the action x by agent Ag, which is given by
the value of the fluent expression FE.

• state cost(FE) specifies the cost of a state as the result of the evaluation of FE.

Whenever no cost declaration is provided for an action or a state, a default cost of 1 is assumed. Once we have
provided the costs for actions and states, we can impose constraints on the cumulative costs of specific states
or complete trajectories. This can be done using assertions of the following types (where k is a number and
op a relational operator):

• cost constraint(plan op k): the assertion adds a constraint on the global cost of the plan.

• cost constraint(goal op k): the assertion imposes a constraint on the global cost of the final state.

• cost constraint(state(i) op k): the assertion imposes a constraint on the global cost of the ith state
of the trajectory.

As a generalization of the above constraints, we allow the use of assertions of the form cost constraint(C),
where C is a constraint, possibly involving fluents, and where the atoms plan, goal, and state(i) might occur
in any place where a fluent might—intuitively, they represent the cost of a plan, of the goal state, and of the
ith state, respectively.

Some directives can be added to an action theory to select optimal solutions with respect to the specified
costs:

minimize cost(FE),

where FE is an expression involving the atoms plan, goal, and state(i), and possibly other fluents. This
assertion requires the search to determine a plan that minimizes the value of the expression FE. For instance,
the two assertions minimize cost(plan) and minimize cost(goal) constrain the search of a plan with
minimal global cost and with minimal cost of the goal state, respectively.
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Example 15 One can express the cost of a single surgery action, that can depend on the surgeon and on the
number of required surgeons.

action cost({nip}, botox, 350). action cost({tuck}, botox, 400).
action cost({nip, tuck}, botox, 600). action cost({nip, tuck}, breast implant, 1500).

A possible constraint on a plan can be the following:

cost constraint(goal ≤ 2000).

stating that the patient can choose a set of actions with total price at most 2000—e.g., four botox surgeries by
nip and one joint surgery by nip and tuck, or just one botox surgery by nip or tuck and one breast implant

surgery.

state cost(FE) indicates the cost of a generic state as the result of the evaluation of the fluent expression
FE, built using the fluents present in the state (otherwise, a default cost of 1 is assumed).

Example 16 Let us consider a system where two agents a and b are located at points of a 2-dimensional grid;
their positions are described by pairs of fluents—(a at x, a at y) for a and (b at x, b at y) for b. This is
described by the fluents

fluent a at x valued in [0, 10]. fluent a at y valued in [0, 10].
fluent b at x valued in [0, 10]. fluent b at y valued in [0, 10].

Lower costs can be assigned to those states where the two agents are close, as follows:

state cost((a at x− b at x) ∗ (a at x− b at x) + (a at y− b at y) ∗ (a at y − b at y))

16.1 Action Domains

An action domain description D is a collection of axioms of the formats described earlier. In particular, we
denote the following subsets of D: ELD is the set of executability conditions, DLD is the set of dynamic causal
laws, and SLD is the set of static causal laws (and all the derived axioms, such as cost axioms).

A specific instance of a planning problem is a tuple 〈D, I,O〉, where D is an action domain description, I
is a collection of initial state axioms and O is a collection of goal axioms (objectives).

The initial state axioms are of the form:
initially C

describing the initial state of the world, where C is a timeless constraint. O is a collection of goal axioms of the
form

goal C

where C is a fluent constraint. We also assume O to contain the directives for search of optimal solutions.

Remark 17 Let us observe that initial state and goal axioms can be seen as syntactic sugars for the static
laws: holds C at 0 and holds C at N, respectively, where N is the plan length.

18 Semantics of BMAP

Let D be a planning domain description and 〈D, I,O〉 be a planning problem. As a language design choice, we
will explore multi-agent problems where each agent can perform at most one action at each time step (semantics
can be developed similarly without this constraint). The set of actions involving the agent a ∈ G are defined
as follows: Aa = {x ∈ A | action(Ag, x) ∈ D, a ∈ Ag}.

The starting point for the definition of a state is the notion of interpretation. Given the collection of fluents
F , an interpretation I is a mapping I : F → Z such that if fluent f valued in Dom is an axiom in D, then
I(f) ∈ Dom.

The ∆ operator is introduced to deal with the inertia laws (reflecting the frame problem [27]). Given two
interpretations I, I ′, and a set of fluents S ⊆ F , we define

∆(I, I ′, S) =

{

I ′(f) if f ∈ S
I(f) otherwise

Intuitively, ∆(I, I ′, S) updates an interpretation I by modifying the value of the fluents in S according to I ′.
Let N denote the number of steps of the plan. A state-transition sequence is a tuple

ν = 〈I0, A1, I1, A2, I2, . . . , AN, IN〉

where I0, . . . , IN are interpretations and Ai is a function Ai : G → A ∪ {∅} such that Ai(a) ∈ Aa ∪ {∅}, for
i ∈ {1, . . . ,N}. Let, moreover, ν|j denote the sequence 〈I0, A1, I1, . . . , Aj , Ij〉.
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Expressions and constraints interpretation. We provide an interpretation based on a state-transition
sequence for the various types of formulae. In particular, we give the definition for the action-fluent expressions
and constraints whose forms subsume the other classes of formulae. Given a state-transition sequence ν and
an AFE ϕ, the value of ϕ w.r.t. ν and 0 ≤ i ≤ N (denoted by νi(ϕ)) is an element of the set of fluents values V
computed as follows:

• if ϕ = m ∈ V , then νi(m) = m.

• If ϕ = f ∈ F , then νi(f) = Ii(f).

• If ϕ is the time offset now (see (7)), then νi(now) = 0.

• The expressions of the form known(a, f), implicitly introduced through axioms (3), are evaluated as
follows:

νi(known(a, f)) =

{

1 if there is an axiom agents A know fluents F
in D, such that a ∈ A and f ∈ F

0 otherwise

• Expressions that refer to absolutely specified points in time, as introduced by (4), are evaluated as follows:

νi(BaseTERM@t) =







νt(BaseTERM) if 0 ≤ t ≤ N

ν0(BaseTERM@0) if t < 0
νi(BaseTERM@N) otherwise

Observe that references before the initial (resp., final) time point are projected to the first (resp., last)
one.

• Expressions based on relative time references are evaluated as follows:

νi(BaseTERM
t) =







νi+t(BaseTERM) if 0 ≤ i + t ≤ N

νi(BaseTERM@0) if i+ t < 0
νi(BaseTERM@N) otherwise

• The evaluation of action flags is slightly more complex. Recall that an action flag of the form actocc(Ag, x)
is implicitly defined through an axiom (5) and it is an integer valued expression. Its value is either a
positive integer (recording the time step in which the action x will terminate) or 0 (denoting that the
action is not being executed). Formally, we put:

νi(actocc(Ag, x)) =







































0 if (∃a ∈ Ag) (Ai(a) 6= x) or i /∈ [0,N]
i+ d if 0 ≤ i < N and (∀a ∈ Ag) (Ai(a) = x) and

action x executable by Ag takes FE steps in D
and νi(FE) = d > 0 and (i = 0 or νi−1(actocc(Ag, x)) < i))

e if 0 ≤ i < N and (∀a ∈ Ag) (Ai(a) = x) and
0 < i ≤ e = νi−1(actocc(Ag, x))

0 otherwise

Observe that such a definition takes into account the executability condition and the duration FE of the
action. In particular, the second case corresponds to the time point in which the action begins. In such a
time point, we must have actocc(Ag, x)) < i—i.e., the action is not being currently executed—and the
expression FE is evaluated—yielding d. The action will end at time i + d. The third case defines the
value of the flag while the action, started in the past, is still being executed. In case takes FE steps

is omitted, d = 1 is implicitly assumed. The duration of an action cannot be a null value, so the flag is
set to 0 whenever FE evaluates to 0 (see the last case).

• Timed references to action flags are evaluated as:

νi(actocc(Ag, x)
t) = νi+t(actocc(Ag, x))

and

νi(actocc(Ag, x)@r) =

{

νr(actocc(Ag, x)) if 0 ≤ r < N,
0 otherwise.

• Compound expressions are evaluated as follows:

νi(AFE1 ⊕ AFE2) = νi(AFE1)⊕ νi(AFE2)
νi(−AFE) = −νi(AFE)

νi(abs(AFE)) = |νi(AFE)|

where ⊕ ∈ {+,−, ∗, /, mod}.

An AFE constraint ϕ is entailed by ν at time i, denoted by ν |=i ϕ, in the following cases:
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• ν |=i Flag iff νi(Flag) > 0 where Flag is FF or AAF

• ν |=i FE1 op FE2 iff |= νi(FE1) op νi(FE2)

• ν |=i ¬C iff ν 6|=i C

• ν |=i C1 ∧ C2 iff ν |=i C1 and ν |=i C2

• ν |=i C1 ∨ C2 iff ν |=i C1 or ν |=i C2

• νi(rei(C)) = 1 iff ν |=i C.

Finally, we can define the semantics of generic constraints (7) involving (restricted) quantification over time:

• ν |=i alwaysC beforeT iff ∀j ∈ {0, . . . , i+ νi(T )− 1} it holds that ν |=j C.

• ν |=i sometimeC beforeT iff ∃j ∈ {0, . . . , i+ νi(T )− 1} such that ν |=j C holds.

• ν |=i alwaysC afterT iff ∀j ∈ {i+ νi(T ) + 1, . . . ,N} it holds that ν |=j C.

• ν |=i sometimeC afterT iff ∃j ∈ {i+ νi(T ) + 1, . . . ,N} such that ν |=j C holds.

• ν |=i forall agentA inAg C(A) iff
∧

A∈Ag ν |=i C(A) where C(A) is the constraint obtained from C
by replacing all occurrences of the variable A with the agent selected from Ag (if the list is omitted then
Ag = G).

• ν |=i exists agentA inAg C(A) iff
∨

A∈Ag ν |=i C(A) where C(A) is as in point above.

State transition sequences and trajectories. The following properties characterize a state-transition
sequence ν:

− ν is initialized w.r.t. a planning problem 〈D, I,O〉, if ν |=0 C for each (initiallyC) ∈ I.

− ν is correct if, for each axiom (actionx executable byAg ) in D and for each i ∈ {1, . . . ,N}, if x ∈ Ai(G),
then {a ∈ G |Ai(a) = x} = Ag.

− ν is closed if the following property is met: for each static law of the form (C2 caused if C1) in D and
for each 0 ≤ j ≤ N, we have that ν |=j C1 → C2.

In order to model the notion of trajectory—intended to represent a correct evolution of the world that leads
to a solution of a planning problem—we will consider the collection of fluent and action-fluent constraints
accumulated during an execution. Let us denote with ShiftFj (C) the constraint obtained from C by replacing

each occurrence of f t with f@(t + j) and with ShiftAj (C) the constraint obtained from C by replacing each
occurrence of actocc(Ag, x)t with actocc(Ag, x)@(t + j). We denote with Shiftj the composition of the two

rewritings ShiftFj ◦ ShiftAj . Observe that given a constraint C, considering the constraint Shiftj(C) corresponds
to evaluating each relative time reference in C with respect to the j-th time point.

Let ~A denote the tuple 〈A1, . . . , AN〉.

• For i ∈ {1, . . . ,N}, let

Concri( ~A) =
∧

x∈Ai(G),Ag={a∈G | Ai(a)=x}

(actocc(Ag, x)@i) > 0.

These are action-fluent constraints describing one step in an action sequence.

• The constraints imposed on the initial state are described by

C0 = Shift0

(

∧

(initiallyC) ∈I

C

)

• The following constraint summarizes, as implications, all possible effects from execution of the actions at
the i-th step:

ACi =
∧

(PC causesEC)∈D

(

ShiftAi (Shift
F
i−1(PC)) → ShiftFi (EC)

)

Observe that ShiftFi−1(PC) evaluates relative time references to fluent values in PC with respect to the
time point in which the action starts. On the other hand, the action flags and the effects of the executions
are evaluated with respect to the subsequent time point.
In order to capture the durable effects we need the additional constraints (for each i):

Untili =
∧

(PC causesEC untilC) ∈ D



Shift
A
i (ShiftFi−1(PC)) →

N−i
∧

j=0





(

j
∧

r=0

Shift
F
i+r(¬C)

)

→ Shift
F
i+j(EC)









In this case, the effects EC of an action persist until the corresponding condition C holds. (The implied
conjunction imposes that, in each of the future time points i + j, EC holds whenever C does not fail in
each time points between i and i+ j.)
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• Finally, executability conditions are rendered as follows. For i ∈ {1, . . . ,N}, let

Execi( ~A) = Shifti−1











∧

x ∈ Ai(G), Ag = {a ∈ G | Ai(a) = x}
(executable actionx byAg ifC) ∈ D

C











The action sequence ~A represents a skeleton of a trajectory w.r.t. the problem specification which is stated
by the action-fluent constraint:

Skel( ~A) ≡ C0 ∧
N
∧

i=1

ACi ∧
N
∧

i=1

Concri( ~A) ∧
N
∧

i=1

Execi( ~A) ∧
N
∧

i=1

Untili

The next step is to complete the skeleton of an action sequence with intermediate states. The selection of the
states should guarantee closure, satisfaction of action effects, and avoidance of unnecessary changes. This is
realized using the previously introduced ∆ operator (see case (5) below), guaranteeing a form of “necessity of
modifications” to the interpretation.

The state-transition sequence ν = 〈I0, A1, I1, A2, . . . , AN, IN〉 is a trajectory if it satisfies the following
conditions:

1. ν is closed

2. 〈A1, . . . , AN〉 is correct

3. ν |=0 Skel( ~A)

4. ν |=N

∧

goalC ∈ O

C

5. for any ∅ 6= S ⊆ F and for each 1 ≤ i ≤ N there are no interpretations I ′i+1, . . . , I
′
N
such that

ν′ = 〈I0, A1, I1, . . . , Ai,∆(Ii, Ii−1, S), Ai+1, I
′
i+1, . . . , AN, I

′
N
〉

and ν′ satisfies the conditions (1)–(4).

If ν is a trajectory, then we will refer to 〈A1, . . . , AN〉 as a plan.

Optimal Trajectories and Plans. In presence of cost declarations, it becomes possible to compare tra-
jectories according to their costs. Given a plan ~A, the cost of the plan is defined as follows: let µ(Ai) =
{(x,Ag) | x ∈ Ai(G), Ag = {a ∈ G | Ai(a) = x}} and pcost(Ai) =

∑

(x,Ag)∈µ(Ai)
val(x,Ag), where

val(x,Ag) =

{

V al action cost(Ag, x, V al) ∈ D
1 otherwise.

We define the cost of a plan as pcost( ~A) =
∑N

i=1 pcost(Ai). Trajectories can be selected based on their plan
cost, either by requiring bounds on the plan cost or requesting optimal plan cost. A plan β is optimal if there
is no other plan β′ for the same problem 〈D, I,O〉 such that pcost(β′) < pcost(β).

We also admit constraints aimed at bounding the cost of a plan; these are denoted by axioms of the form
cost constraint(plan op n), where n is a number and op is a relational operator. A plan 〈A1, . . . , AN〉 is
plan-cost-admissible if pcost(〈A1, . . . , AN〉)op n.

Similar considerations can be done for the case of state costs, assuming that there is an axiom of the form
state cost(FE). For any trajectory ν we define scost(ν) =

∑N

j=0 νj(FE). We can define a trajectory to be
optimal if there is no other trajectory ν′ such that scost(ν′) < scost(ν). We allow in the domain specification
axioms of the form cost constraint(state(i) op n), for some 0 ≤ i ≤ N; in this case, a trajectory ν is
state-cost-admissible if νi(FE)op n, for all such indices i.

19 Implementation and Experiments

19.1 Some Considerations about the Implementation

Let us briefly describe how BMAP action descriptions are mapped to finite domain constraints, and how the
implementation can be realized in a concrete constraint logic programming system, specifically SICStus Prolog.
The implementation is based on the implementation of the (single agent and non-concurrent) language BMV [14]
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and it is also the first encoding analyzed in [5]. The implementation is the first prototype of BMAP, and as such
it should be considered work in progress. In particular, the current implementation supports only partially
the use of durative actions and effects. Furthermore, for the sake of simplicity, the current implementation
provides an incomplete treatment of static causal laws; sets of static causal laws that contain positive loops
in the atom-level dependency graph may lead to non-minimal solutions—the problem can be easily addressed
with the use of some additional constraints, as discussed in [14].

Let f be a fluent, declared by means of the axiom fluent . . . f . . . valued in Dom. We represent its
value in the state sj through a constrained variable F j

f , with finite-domain Dom. Moreover, such a fluent is
known by a list Ag of agents, as declared by an axiom agents Ag known fluents F with f ∈ F . A state is
represented by a list of Prolog terms of the form fluent(Ag, f, F j

f ), one for each fluent f ∈ F .

��
��

s0

F 0
f

-

��
��

?

t1
A1

x

��
��

s1 -

��
��

t2

? ��
��

-s2 . . .

��
��

tN

? -

��
��

sN

A transition ti from the state si−1 to si is described by the axioms stating dynamic laws action x executable by Ag . . . .
This is represented by a list of Prolog terms action(Ag, x,Ai

x). Differently from [14], in order to process durable
actions, Ai

x is not simply a Boolean variable, but a FD variable with values in {0, . . . ,N}, where N is the plan
length. Its value will represent the time when the action ends. Ai

x > 0 if and only if the action flag actocc(Ag, x)
holds at the ith time step. Since Ag is, in general, a list containing several agents, for each time step i we
introduce a Boolean variable Gi

x,a for each agent a ∈ A. This allows us to force the constraint that each agent
executes at most one action per time step.

Constraints are added following the structure discussed in the previous section. In particular, if Ai
x > 0,

then either the action has just started (and therefore it must be justified by executability conditions) or the
action has started some steps before but it has not ended yet. This can be reflected by constraints of the
following form: if Ai

x > Ai−1
x then the disjunction Di−1 of constraints governing its executability is collected

(replacing fluents and flags with the correct variables of state i) and a constraintAi
x → Di−1 is added. Moreover,

always under the same condition Ai
x > Ai−1

x , if the duration of the action is d then we will add the constraint
Ai

x = i+ d ∧ · · · ∧ Ai+t−1 = i+ d.
Static laws are added as a constraint repeated in each state transition. Similarly, cost constraints are added

and dealt with by the constraint solver of SICStus Prolog.
The semantics of the language supports the notion of inertia through minimality of modifications of the

interpretations. The implementation follows the same scheme discussed in [14] to address this issue.

The interpreter of the language BMAP is available at www.dimi.uniud.it/dovier/CLPASP/MAP along with
some planning domains. At the first level, the labeling strategy is mainly a “leftmost” strategy that follows the
temporal evolution of a plan. We first consider the transition 〈s0, t1, s1〉, then the transition 〈s1, t2, s2〉, and
so on. However, we provide the programmer with the ability of choosing the strategy within each of these sets
(there exists no best strategy for all problems—see, e.g., [36]). One can choose leftmost, ff (first-fail), or ffc
(first-fail with a choice on the most constrained variable). We also noticed that, in our tests, ff and ffc have, in
most of the cases, similar performance. An additional labeling strategy, ffcd, combines ffc with a downward
selection of values for constrained variables. In most cases this strategy provided the best performances.

19.2 Evaluation

The first phase of the evaluation concentrated on measuring the impact of the CLP-based approach to planning—
focusing on single-agent domains. We evaluated the CLP implementation of the proposed language on some
classical single-agent domains, such as the three barrels (12-7-5), a Sam Lloyd’s puzzle, the goat-cabbage-wolf
problem, the peg-solitaire (csplib 037, also in the 2008 planning competition IPC08—in [21] the authors solve
it in 388s after a difficult encoding using operations research techniques. We solve it in less than 45 seconds
with a simple BMAP encoding), and the gas diffusion problem [14] (we tested an 11-room building):

A building contains a number of rooms in the first floor. Each room is connected to (some) other
rooms via gates. Initially, all gates are closed and some of the rooms contain certain amounts of
gas (the other rooms are assumed to be empty). Each gate can be opened or closed. When a
gate between two rooms is opened the gas contained in these rooms flows through the gate. The
gas diffusion continue until the pressure reaches an equilibrium. The only condition to be always
satisfied is that a gate in a room can be opened only if all other gates are closed. The goal for
Diabolik is to move a desired quantity of gas in the specified room which is below the central bank
(in order to be able to generate an explosion).

13



We also tested the BMAP implementation on the suite of Peg Solitaire instances used in IPC08 for the
“sequential satisficing track”. The competition imposed these restrictions: the plan has to be produced within
30 minutes, by using at most 2GB of memory. The suite is composed of 30 problems. The BMAP planner found
the optimal plan for 24 problems. Although a fair comparison is not possible since the solvers participating
to the competition were forced to start from a fixed PDDL encoding, we would like to notice that with 24
solutions we would be in the third position (out of 11 participants, excluding us).

In order to evaluate the ability to handle multi-agent domains, we have tested the interpreter on some
inherently concurrent domains, such as

• The dining philosophers, with the traditional rules, with the assumption that each philosopher can survive
for 10 seconds without eating. We ask for a plan that ensures all philosophers to be alive at a certain
time;

• A problem of cars and fuels (EATCS bulletin N. 89, page 183—by Laurent Rosaz—tested with four cars);

• A social-game invented by us (c.f. [14]). Briefly, let us consider a set of M individuals 1, 2, . . . ,M . At
each time step, one of them, say j, can give exactly j dollars to someone else, provided she/he owns more
than j dollars. Nobody can give away all of her/his money. The goal consists of reaching a state in which
all the participants have the same amount of money. In case M = 6 the game requires 6 actions if solved
by one agent.

• Two problems described in previous papers on concurrency and knowledge representation. The first
problem is adapted from the working example of [7]:

Bob is in the park. Mary is at home. Bob wishes to call Mary to join him. Between the park
and Mary’s house there is a narrow road. The door is old and heavy. First Bob needs to ring
the bell. Then they can open the old door in cooperation. Mary cannot leave the house if the
door is closed.

We have modeled it using collective actions and compound actions (for opening the door).
The second problem is instead adapted from the working example of [6], and it is related to two agents
that need to carry blocks between two rooms, using a table to lift them. We experimented with a basic
BMAP encoding of this problem, combined with different static laws (involving a control of concurrency—
c.f. Example 14), which impose commonsense conditions (e.g., the same block cannot be simultaneously
grabbed by two agents; agents must avoid undoing the effects of previously performed actions or moving
between the rooms without carrying objects). We also introduce symmetry-breaking rules (e.g., blocks
have to be grabbed in order). The goal asks that in the final state all the objects should be placed on the
ground of the second room. A short and smart plan has been found: the two agents move all the blocks
on the table and move the table to the second room, then one of the agent releases the table, so, in a
single move, all the blocks fall on the ground.

Table 1: Experimental Results

Agents Plan length Vars leftmost (s) ffc (s) ffcd (s)

1. Three Barrels 1 11 62 0.12 0.11 0.07
2. Goat-Wolf etc. 1 23 219 0.14 0.04 0.28
3. Gas diffusion 1 6 132 34.9 34.9 9.65
4. Puzzle 1 15 915 62.0 64.7 4.55
5. Peg Solitaire 1 31 1999 – – 44.7

6. Bob and Mary 2 5 25 0.01 0.01 0.01
7. Social Game 5 2 40 0.04 0.04 0.06
8. Dining philosophers 5 9 210 339 439 –
9. Fuel and Cars 4 10 90 736 743 0.48

10. Robots and Table 2 7 184 316 461 118

1 9 260 5.56 5.57 2.61
11. Pumps and Pipes 2 7 372 – – 49.8

3 6 447 – – 16.0

Table 1 summarizes some of the experimental results. The columns indicate the length of the plan found, the
number of finite domain variables present in the problem once all the constraints have been asserted, and the
remaining columns report the times to find the plan using different labeling strategies—i.e., leftmost selection
of variables, ffc, and ffcd. The symbol “–” denotes that no solution has been found within one hour. We have
experimentally determined that those plan lengths are the minimum values to ensure the existence of a plan
(optimal plans).
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We would like to underline that we are not aware of a set of benchmarks for multi-agent reasoning systems
based on action description languages as expressive as the one we propose. We have considered the benchmarks
used in the 2009 Answer Set Competition.1 The first two problems, called HydraulicPlanning and HydraulicLeak-

ing (proposed by Michael Gelfond, Ricardo Morales, and Yuanlin Zhang) are, in fact, two planning problems
that can be easily modeled in BMAP. Our implementation was able to determine solutions for all the proposed
benchmarks within the admitted running time. The performance of BMAP is competitive, but not at the level
of the competition winning system Clingo (clasp + Gringo)—for both the sophisticated encoding proposed
by Clingo’s team and the ASP encoding automatically obtained from a B-modeling of the problem using the
translator we proposed in [14]. It must be said, however, that the two problems are inherently single-agent
and Boolean. Some optimizations (e.g. the use of combinatorial constraints as proposed in [5]) are needed
to be competitive with systems like Clingo on these types of problems. On the other hand, variants of these
problems with numerical values for pressures generate huge ground programs that Clingo cannot deal with,
while BMAP can solve in the same running time as for the Boolean case. We have therefore generated a new
example (called Pumps and Pipes) that generalizes the just mentioned problems. There is a network of pipes
with pumps introducing fuel in a network. Pipes are partially broken and loose some fuel. The objective is to
fill some targets. We report some results in Table 1. In the case of single agent we have compared the running
time with Clingo on the ASP encoding automatically produced by a B encoding. clasp run for 3 minutes for
finding the minimal solution of 9 steps (working on a ground file of 90MB) against the 2.61s of BMAP. Moreover,
simply by adding axioms of the form (1), the same BMAP code can be used for planning with more agents. In
these cases, shorter plans are found.

In Section 2 we have discussed the logic based action languages GOLOG and Flux, based on situation
calculus and fluent calculus, respectively. Even though the objectives of GOLOG are radically different from
those of BMAP, we performed a simple experimental comparison. We have encoded the just mentioned three
barrels problem (a rather standard problem with basically a single reasonable encoding) in the two systems
and asked for a goal of fixed length as in our system. The simple SWI-Prolog interpreter downloaded from the
official website of GOLOG is extremely slow. For the instance, with plan length 11 reported in Table 1 the
solution was found after more than two days of computation. It must be said that GOLOG is developed with
the aim of verifying procedural knowledge rather than planning.

As far as Flux is concerned, we used the SICStus Prolog interpreter of the language (that exploits Constraint
Handling Rules). However, as mentioned in Section 2, Flux and BMAPadopt radically different approaches and
intend to achieve different purposes. This is the main reason preventing a fair extensive comparison of the two
systems. However, we run some simple tests and experimented significantly different efficiencies. For instance,
Flux returns the 11 actions fixed length plan in roughly 12s (vs the 0.1s of BMAP).

20 Conclusions and Future Work

In this paper, we presented a constraint-based action description language, BMAP, that extends the previously
proposed language BMV [14] to meet the needs of modeling interactions among multiple agents. The new
language retains all the key features of BMV , namely the availability of multi-valued fluents and the possibility
of referring to fluents in any different state of the trajectory in the description of preconditions and effects
of actions. The major novelty of BMAP consists of allowing declarative formalization of planning problems in
presence of multiple interacting agents. Each agent can have a different (partial) view of the world and a
different collection of executable actions. Moreover, preconditions, as well as effects, of the actions it performs,
might interact with those performed by other agents. Concurrency and cooperation are easily modeled by
means of static and dynamic causal laws, that might involve constraints referring to action occurrences (even
performed by different agents in different points in time). The specification of cost-based policies is also
supported in order to better guide the search for a plan.

We provided a semantics for BMAP based on the notion of transition system, in the spirit of the semantics of
the B action language [17]. An implementation, realized by mapping the action language to a CLP system, has
been tested on a number of multi-agent planning problems drawn from the literature on multi-agent systems
(see, e.g., [6, 7]). The reader is referred to the web site www.dimi.uniud.it/dovier/CLPASP/MAP where the
source code of the planner, together with some BMAP domain descriptions are available. Work is in progress on
exploring the reliability and performance of the system on more complex benchmarks, including problems with
durable actions.

One possible extension currently being explored allows the explicit modeling of situations in which agents’
views of fluents may dynamically change during the execution of actions. This is realized using constraints of

1http://dtai.cs.kuleuven.be/events/ASP-competition/
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the form:
GR ::= grant f1, . . . , fk to a1, . . . , an |

revoke f1, . . . , fk to a1, . . . , an
(12)

as consequences of static or dynamic causal laws. Several issues need to be addressed to support such extension,
e.g., interaction between change of accessibility and delayed action effects and introduction of agent privileges
to control access to knowledge.

Another possible extension is that of allowing a (partial) preference order among groups of actions, for
instance by allowing assertions of the following form:

x [executed by Ags] is preferred to y [executed by Bgs] (13)

This ordering can be exploited by the solver during the search for plans.
A third direction for future extensions of the work is to exploit the use of combinatorial constraints in

the constraint modeling. This has been shown to offer enhanced performance in simple CLP-based planning
tools—e.g., for single-agent domains [5].

Finally, we are exploring the shift of perspective from a centralized planning perspective, as discussed in
this paper, to a fully distributed planning perspective. In this new scenario, agents perform independent
planning, possibly seeking to accomplish individual goals, but may cooperate and/or compete in the execution
of actions and in modifying the common environment. In this context, an interesting and comprehensive model
of agency is the KGP model (standing for Knowledge, Goals, and Plan [22]). It supports the modeling of several
advanced aspects of agency, such as the capabilities of agents to change their goals as a reaction to other events,
to perform various forms of temporal reasoning, and to deal with knowledge incompleteness. These features
are being considered in the design of future extensions of our framework.
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